Virtual Library

Start Your Search

Isaac Streit



Author of

  • +

    MA10 - Emerging Technologies for Lung Cancer Detection (ID 129)

    • Event: WCLC 2019
    • Type: Mini Oral Session
    • Track: Screening and Early Detection
    • Presentations: 1
    • Now Available
    • +

      MA10.06 - Randomized Clinical Trial with Computer Assisted Diagnosis (CAD) Versus Radiologist as First Reader of Lung Screening LDCT (Now Available) (ID 2102)

      15:15 - 16:45  |  Author(s): Isaac Streit

      • Abstract
      • Presentation
      • Slides

      Background

      CAD has been studied extensively in lung nodule detection while its value in lung cancer screening has not been tested in a prospective randomized clinical study. We aim to evaluate the value of a CAD in radiologist work-flow and for quality assurance in reading and reporting lung cancer screening LDCT.

      Method

      Between August 2016 and February 2019, 1386 ever smokers were enrolled in the BC Lung Screen Trial. The median follow-up was 10 months. Their chest CTs were randomized to CAD reading first arm using a CAD system (Philips IntelliSpace Portal) (n=741), or Radiologist reading first (RAD) arm (n=645). In CAD-1st arm, a radiologist read CTs with the CAD findings displayed concurrently, accepting, rejecting and adding nodule(s). Radiologist’s reading time was recorded, and management recommendation was made using the automatically generated PanCan lung nodule risk score (N Engl J Med 2013; 369:910-919). In Rad-1st arm, the radiologist read the CT without using CAD, gave the management recommendation using Lung-RADS, and the reading time was recorded. Then the radiologist turned on CAD annotations to accept, reject and add nodule(s). The PanCan nodule risk scores were generated. Nodule management was categorized into 3 groups: I: Scheduled follow-up CT ≥1yr for those with no or very low risk lung nodules; II: Early recall CT <1 yr; or III: Referral to clinical diagnostic pathway for suspicious malignancy.

      Result

      Radiologist’s reading time was shorter in CAD-1st than Radiologist-1st arm (9±3 vs. 10±3 minutes, p<0.01). The time saved was greatest for Group I scans (85% of workload) (8±3 vs. 10±3 minutes, p<0.01). In 20/741 (2.7%) participants in CAD-1st arm, the additional nodule added by the radiologist upgraded the patient’s management; 5 of 20 were later confirmed to be malignant. Two of 5 were >3cm masses, the other three included a 19 mm GGO and two solid ones abutting vessels. In 1/645 (0.15%) participants in Radiologist-1st arm, the additional nodule detected by CAD upgraded the patient’s management from Group I to II. Over 31-months of follow-up, 29 cancers (2.1%) have been detected, and 1 of 29 (3.4%), a 5 mm solid nodule in the left lower lobe abutting the fissure and vessels, was missed by both radiologist and CAD.

      Conclusion

      CAD saves radiologist’s time in reading large numbers of screening LDCT especially in those with no or very low risk lung nodules. However, reading by experienced radiologist is still needed.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.