Virtual Library

Start Your Search

Dong-Wan Kim



Author of

  • +

    MA09 - EGFR & MET (ID 128)

    • Event: WCLC 2019
    • Type: Mini Oral Session
    • Track: Targeted Therapy
    • Presentations: 1
    • Now Available
    • +

      MA09.09 - Long-Term Outcomes to Tepotinib Plus Gefitinib in Patients with <i>EGFR</i>-Mutant NSCLC and MET Dysregulation: 18‑Month Follow-Up (Now Available) (ID 1783)

      15:15 - 16:45  |  Author(s): Dong-Wan Kim

      • Abstract
      • Presentation
      • Slides

      Background

      In EGFR-mutant NSCLC, MET amplification may cause resistance to EGFR tyrosine kinase inhibitors (TKIs). In a Phase Ib/II study in EGFR TKI-resistant patients with EGFR-mutant MET+ NSCLC, progression-free survival (PFS) and objective response rate (ORR) after ≥6 months of follow-up were improved with tepotinib (a highly selective MET TKI) plus gefitinib, compared with chemotherapy, particularly in patients with MET amplification. Here we present data at ≥18 months of follow-up.

      Method

      Asian patients with advanced, EGFR+, T790M-, MET+ NSCLC with resistance to prior EGFR TKIs were randomized to receive oral tepotinib 500 mg/day+gefitinib 250 mg/day or ≤6 cycles of cisplatin/carboplatin+pemetrexed chemotherapy±pemetrexed maintenance until confirmed progression, unacceptable toxicity, or withdrawal. Primary endpoint was investigator-assessed PFS. Secondary endpoints included ORR, overall survival (OS) and safety. Subgroup analyses were preplanned in MET IHC3+ and MET amplification populations (NCT01982955).

      Result

      Low recruitment halted full enrolment with 55 of 156 planned patients enrolled.

      As of 12-Dec-2018, median (range) duration of treatment with tepotinib+gefitinib was 21.4 (4.6, 110.9) weeks, with 3 patients still receiving treatment; and with pemetrexed was 18.0 (3.0, 60.4) weeks. 15 patients (62.5%) received ≥4 cisplatin/carboplatin cycles.

      Better outcomes were reported with tepotinib+gefitinib vs chemotherapy (Table), particularly in patients with MET IHC3+ (PFS: HR 0.35 [90% CI 0.17–0.74], OS: 0.32 [0.14–0.75]) or MET amplification (PFS: HR 0.13 [90% CI 0.04–0.43], OS: 0.08 [0.01–0.51]).

      Drug-related grade ≥3 adverse events (AEs) occurred in 17 (54.8%) patients receiving tepotinib+gefitinib and 12 (52.2%) patients receiving chemotherapy. Any-cause AEs leading to discontinuation occurred in 3 (9.7%) patients receiving tepotinib+gefitinib and 1 (4.3%) receiving chemotherapy. Dose reductions due to AEs were reported in 5 (16.1%) vs 4 (17.4%) patients.

      Conclusion

      Tepotinib+gefitinib has durable antitumor activity in patients with EGFR-mutant NSCLC with MET IHC3+ or MET amplification, and was generally well tolerated. MET amplification will be further explored as a biomarker for tepotinib.

      Table: Summary of efficacy data

      Population

      Tepotinib + gefitinib

      Chemotherapy

      HR/OR
      (90% CI)

      Overall MET+*

      Patients, n

      31

      24

      mPFS, months (90% CI)

      4.9 (3.9, 6.9)

      4.4 (4.2, 6.8)

      0.67 (0.35, 1.28)

      mOS, months (90% CI)

      17.3 (12.1, 37.3)

      18.7 (15.9, 20.7)

      0.67 (0.33, 1.37)

      ORR, n (%) [90% CI]

      14 (45.2) [29.7, 61.3]

      8 (33.3) [17.8, 52.1]

      1.99 (0.56, 6.87)

      MET IHC3+

      Patients, n

      19

      15

      mPFS, months (90% CI)

      8.3 (4.1, 21.2)

      4.4 (4.1, 6.8)

      0.35 (0.17, 0.74)

      mOS, months (90% CI)

      37.3 (24.2, 37.3)

      17.9 (12.0, 20.7)

      0.32 (0.14, 0.78)

      ORR, n (%) [90% CI]

      13 (68.4) [47.0, 85.3]

      5 (33.3) [14.2, 57.7]

      4.33 (1.03, 18.33)

      MET amplification

      Patients, n

      12

      7

      mPFS, months (90% CI)

      21.2 (8.3, NE)

      4.2 (1.4, 7.0)

      0.13 (0.04, 0.43)

      mOS, months (90% CI)

      37.3 (NE, NE)

      13.1 (3.3, NE)

      0.08 (0.01, 0.51)

      ORR, n (%) [90% CI]

      8 (66.7) [39.1, 87.7]

      3 (42.9) [12.9, 77.5]

      2.67 (0.37, 19.56)

      CEP-7, centromere protein 7; CI, confidence interval; EGFR, epidermal growth factor receptor; GCN, gene copy number; HR, hazard ratio; IHC, immunohistochemistry; IRC, independent review committee; ITT, intention to treat; MET, mesenchymal-epithelial transition factor; NE, not estimable; OR, odds ratio; ORR, objective response rate; OS, overall survival; PFS, progression-free survival

      All efficacy outcomes are investigator-assessed by RECIST v1.1.

      *IHC2+/IHC3+/gene amplification.

      MET amplification is defined as GCN ≥5 and/or MET/CEP-7 ratio ≥2. 17 of 19 patients with MET amplification have MET overexpression (IHC3+).

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P1.01 - Advanced NSCLC (ID 158)

    • Event: WCLC 2019
    • Type: Poster Viewing in the Exhibit Hall
    • Track: Advanced NSCLC
    • Presentations: 1
    • Moderators:
    • Coordinates: 9/08/2019, 09:45 - 18:00, Exhibit Hall
    • +

      P1.01-84 - Interaction of Lorlatinib with CYP2B6, CYP2C9, UGT, and P-gp Probe Drugs in Patients with Advanced Non-Small Cell Lung Cancer (ID 293)

      09:45 - 18:00  |  Author(s): Dong-Wan Kim

      • Abstract
      • Slides

      Background

      Lorlatinib is a small-molecule anaplastic lymphoma kinase (ALK) inhibitor approved for treatment of patients with ALK-positive advanced non-small cell lung cancer (NSCLC). Because lorlatinib is an inducer and inhibitor of various cytochrome P450 (CYP) enzymes and transporters, an evaluation of its effect on these substrates at steady state is warranted. A drug-drug interaction (DDI) sub-study was conducted in patients with advanced NSCLC to evaluate the net effect of these interactions.

      Method

      Probe drugs utilized included bupropion for CYP2B6, tolbutamide for CYP2C9, acetaminophen for uridine 5'-diphospho-glucuronosyltransferase (UDP-glucuronosyltransferase, UGT), and fexofenadine for P-glycoprotein-1 (P-gp). Thirty-two patients (to have at least 6 evaluable patients per probe drug) were administered a single dose of a probe drug alone on Day −2 to determine plasma exposure of the probe drug alone. Starting on Cycle 1 Day 1, patients began lorlatinib tablets 100 mg daily. On Cycle 1 Day 15, another single dose of the same probe drug was administered concurrently with lorlatinib.

      Result

      Co-administration of lorlatinib 100 mg with bupropion, a sensitive CYP2B6 probe drug, decreased bupropion geometric mean plasma AUCinf and Cmax by 25% and 27%, respectively. For tolbutamide, a sensitive CYP2C9 probe drug, lorlatinib decreased tolbutamide AUCinf and Cmax by 43% and 15%, respectively. Likewise, for acetaminophen, a sensitive UGT substrate, lorlatinib decreased acetaminophen AUCinf and Cmax by 45% and 28%, respectively. Finally, for fexofenadine, a sensitive P-gp substrate, lorlatinib decreased fexofenadine AUCinf and Cmax by 67% and 63%, respectively.

      Conclusion

      Critical steady-state–based DDI evaluations can be conducted in patients with cancer in carefully designed studies. Per FDA guidance, strong, moderate, and weak inducers are drugs that decrease the AUC of sensitive index substrates by ≥80%, ≥50% to <80%, and ≥20% to <50%, respectively. Based on these criteria, lorlatinib behaved as a net weak inducer of CYP2B6, CYP2C9, and UGT; and a net moderate inducer of P-gp. The results of this sub-study can help guide recommendations for dose modifications when lorlatinib is given concomitantly with drugs that are metabolized by these enzymes or transporters. Based on the current results, only drugs that are P-gp substrates of narrow therapeutic index may require dose adjustments when used concomitantly with lorlatinib.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P2.14 - Targeted Therapy (ID 183)

    • Event: WCLC 2019
    • Type: Poster Viewing in the Exhibit Hall
    • Track: Targeted Therapy
    • Presentations: 1
    • Moderators:
    • Coordinates: 9/09/2019, 10:15 - 18:15, Exhibit Hall
    • +

      P2.14-20 - ATORG-003: Dacomitinib With or Without Dose Titration as First-Line Therapy for Metastatic EGFR Mutant Non-Small Cell Lung Cancer (NSCLC) (ID 67)

      10:15 - 18:15  |  Author(s): Dong-Wan Kim

      • Abstract
      • Slides

      Background

      Dacomitinib is a second generation EGFR tyrosine kinase inhibitor (TKI) with irreversible pan-HER inhibitory activity. In the phase III ARCHER 1050 trial, median PFS was improved from 9.2 months to 14.7 months in the gefitinib and dacomitinib groups respectively. Significantly, median overall survival (OS) was also improved from 26.8 months to 34.1 months. However, dacomitinib commenced at 45 mg orally daily was associated with increased toxicity, higher rates of dose reductions and treatment discontinuation. Despite this, post-hoc analysis revealed the efficacy of dacomitinib (PFS and OS) was similar in dose-reduced patients and the overall study population. This investigator-initiated trial aims to evaluate an alternative dose titration strategy to improve the safety and tolerability of dacomitinib while maintaining treatment efficacy. The trial is being conducted by the Asian Thoracic Oncology Research Group (ATORG) – a co-operative lung cancer trials group in Asia.

      Method

      ATORG-003 is a multi-national, multi-centre, single-arm, open-label, phase 2 clinical trial of dacomitinib in newly diagnosed stage IIIB/IV or recurrent EGFR mutant (exon 19 deletion or L858R mutation) NSCLC patients. Importantly, subjects with asymptomatic central nervous system (CNS) metastases will be eligible. Patients will be administered dacomitinib 30 mg orally daily for one cycle (4 weeks), after which subjects with <G1 toxicity attributable to dacomitinib may escalate to 45 mg with shared investigator and patient decision. Dose reductions to 30 or 15 mg daily will be permitted. The primary objective is to evaluate PFS rate at 12 months. Key secondary objectives include OS, objective response rate (ORR), time to treatment failure (TTF) and intracranial objective response rate (iORR). Exploratory objectives include evaluation of dacomitinib resistance mechanism(s) using next-generation sequencing (NGS) on tissue and plasma circulating tumour DNA (ctDNA). Across 15 sites in six Asian countries (Hong Kong, Korea, Malaysia, Singapore, Taiwan, Thailand), a planned 118 subjects will be enrolled. Primary analysis will be conducted on subjects without CNS metastases only, with 94 subjects required to achieve a one-sided significance level of 5% and 90% power to detect a 15% improvement in 12 month PFS rate for dacomitinib versus historical control for gefitinib (i.e. 55% versus 40%) using the intent-to-treat (ITT) analysis population. Enrollment is due to begin in July 2019.

      Result

      Section not applicable.

      Conclusion

      Section not applicable.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.