Virtual Library

Start Your Search

A. Futreal



Author of

  • +

    MA 01 - SCLC: Research Perspectives (ID 650)

    • Event: WCLC 2017
    • Type: Mini Oral
    • Track: SCLC/Neuroendocrine Tumors
    • Presentations: 1
    • +

      MA 01.03 - The Potential of ctDNA Sequencing in Disease Monitoring and Depicting Genomic Evolution of Small-Cell Lung Cancer Under Therapy (ID 9682)

      11:00 - 12:30  |  Author(s): A. Futreal

      • Abstract
      • Presentation
      • Slides

      Background:
      Although small cell lung cancer (SCLC) is sensitive to initial therapy, almost all patients relapse and survival remains poor. Outgrowth of treatment-resistant subclones could be responsible for recurrence. However, genomic evolution of SCLC after treatment hasn’t been well investigated, partially due to the challenge of obtaining longitudinal samples. CT is the standard modality for response assessment and disease monitoring. But it doesn’t always accurately assess the disease status. SCLC is characterized by early hemagenous spread, which makes circulating tumor DNA (ctDNA) analysis a promising modality for genomic profiling and disease monitoring of SCLC.

      Method:
      Targeted-capture deep sequencing (mean target coverage 538x-1866x) of 545 cancer genes was performed to 44 ctDNA samples collected before therapy as baseline and at different timepoints during treatment from 23 SCLC patients. Pretreatment tumor biopsies from 8 patients were also sequenced (mean target coverage 348x-1281x) of the same gene panel. DNA from peripheral blood mononuclear cells was served as the germline control.

      Result:
      Mutations were identified in all 44 ctDNA samples with a median of 16 mutations per sample (average mutation burden of 6.6/Mb). TP53 and RB1 were the most frequently mutated genes, detected in 91% (21/23) and 65% (15/23) patients, respectively. 74 mutations were identified from the 8 tumor biopsies, among which, 69 (93.2%) were detected in matched ctDNA. We inferred subclonal architecture of each ctDNA sample based on cancer cell fraction derived using PyClone. A median of 10 (ranging 2-26) subclones was inferred from each ctDNA sample and only 17% (2% to 60.%) of mutations were clonal mutations suggesting substantial genomic heterogeneity. Single gene mutations were not associated with survival. However, mean variant allele frequency of clonal mutations (clonal-VAF) at baseline was associated with progression-free survival (PFS) and overall survival (OS) independent of stage, age, or platinum sensitivity. The median PFS of patients with higher versus lower than median clonal-VAF was 5.2 months (95% CI, 4.6 to 5.8 months) versus 10.0 months (95% CI, 9.3 to 10.7 months), p=0.002. The median OS was 8.1 months (95% CI, 5.5 to 10.7 months) versus 24.9 months (95% CI, 0.0 to 51.2 months) in patients with higher versus lower than median clonal-VAF, respectively, p=0.004. Analysis of serial ctDNA before and during treatment showed that clonal-VAF closely tracked closely with treatment responses.

      Conclusion:
      ctDNA sequencing is a promising modality for genomic profiling and disease monitoring for SCLC patients. Clonal VAF may be a better ctDNA metric than single gene mutations.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P2.02 - Biology/Pathology (ID 616)

    • Event: WCLC 2017
    • Type: Poster Session with Presenters Present
    • Track: Biology/Pathology
    • Presentations: 1
    • +

      P2.02-013 - Investigation of Genomic and TCR Repertoire Evolution of AAH, AIS, MIA to Invasive Lung Adenocarcinoma by Multiregion Exome and TCR Sequencing (ID 9192)

      09:30 - 16:00  |  Author(s): A. Futreal

      • Abstract
      • Slides

      Background:
      Carcinogenesis may result from accumulation of molecular aberrations (molecular evolution) and escaping from host immune surveillance (immunoediting). It has been postulated that atypical adenomatous hyperplasia (AAH) represents preneoplastic lesion that may progress to adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA) and further to frankly invasive adenocarcinoma (ADC). However, due to lack of appropriate study materials, the molecular and immune landscape of AAH, AIS or MIA have not been well studied and the definition and management of these lesions remain controversial.

      Method:
      With the intent to delineate the pivotal molecular and immune events during early carcinogenesis of lung adenocarcinoma, we have collected 119 resected pre- and early neoplastic lung lesions including AAH (N=24), AIS (N=27), MIA (N=54) and ADC (N=14) from 53 patients including 41 patients presenting with multifocal lesions and 25 patients carrying more than one type of pathology. Two to five spatially separated regions from each lesion were subjected to whole exome sequencing and T cell receptor sequencing.

      Result:
      Mutation burden (average SNVs) was found to progressively increase from 1.32/Mb in AAH to 2.55/MB in AIS, 5.42/MB in MIA and 15.38/MB in ADC. Genomic heterogeneity has also become more complex with neoplastic progression with mean Shannon index of 1.53 in AAH, 1.78 in AIS, 1.56 in MIA and 1.79 in ADC. An increase in C>A transversions coincident with a decrease in A>G transitions and progressively increasing APOBEC enrichment scores (4.13 in AAH, 5.63 in AIS, 6.02 in MIA and 6.59 in ADC) were observed with neoplastic disease progression. Furthermore, phylogenetic analysis revealed varying evolutional processes in AAH, AIS, MIA and ADC with canonical cancer gene mutations in KRAS, ATM, TP53 and EGFR etc. as key drivers in a subset of patients. TCR sequencing demonstrated a progressive decrease in T cell density (average percent T cells among all nuclear cells: 12% in AAH, 8% in AIS, 7% in MIA and 4% in ADC) and a progressive decrease in productive TCR clonality (average productive TCR clonality: 0.0434 in AAH, 0.0427 in AIS, 0.0399 in MIA and 0.0395 in ADC) suggesting suppressive T cell repertoire in more advanced diseases.

      Conclusion:
      Our results provide molecular evidence supporting the model of early lung carcinogenesis from AAH, to AIS, MIA and ADC and demonstrated that with disease progression, genomic landscape of lung neoplastic lesions has become progressively more complex along with progressive immunosuppressive TCR repertoire.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.