Virtual Library

Start Your Search

J. Burgess



Author of

  • +

    P2.01 - Poster Session with Presenters Present (ID 461)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Biology/Pathology
    • Presentations: 1
    • +

      P2.01-081 - CDCA3 is a Novel Prognostic Cell Cycle Protein and Target for Therapy in Non-Small Cell Lung Cancer (ID 5823)

      14:30 - 15:45  |  Author(s): J. Burgess

      • Abstract
      • Slides

      Background:
      Lung cancer is the leading cause of cancer-related mortality worldwide with a 5 year survival rate of 15%. Non-small cell lung cancer (NSCLC) is the most commonly diagnosed form of lung cancer. Cisplatin-based regimens are currently the most effective chemotherapy for NSCLC, however, chemoresistance poses a major therapeutic problem. New and reliable strategies are required to avoid drug resistance in NSCLC. Cell division cycle associated 3 (CDCA3) is a key regulator of the cell cycle. CDCA3 modulates this process by enabling cell entry into mitosis through degradation of the mitosis-inhibitory factor WEE1. CDCA3 itself is also degraded in G1 yet re-expressed in G2/M phase, to allow successful progression through the cell cycle. Herein, we describe CDCA3 as a novel prognostic factor in NSCLC and target to delay or prevent cisplatin resistance in NSCLC.

      Methods:
      CDCA3 expression was investigated in squamous and non-squamous NSCLC using several approaches including bioinformatic analysis of publicly available datasets, immunohistochemistry of a tissue microarray and western blot analysis of matched tumour and normal tissue and NSCLC cell lines. CDCA3 function in NSCLC was determined using several in vitro assays by siRNA depleting CDCA3 in a panel of three immortalized bronchial epithelial cell lines (HBEC) and seven NSCLC cell lines.

      Results:
      CDCA3 transcripts and protein levels are elevated in NSCLC patient tissue and highly expressed in tumour cells relative to proximal normal cells. High mRNA levels are associated with poor survival in resected NSCLC. Depletion of CDCA3 in vitro markedly impairs proliferation in seven NSCLC cell lines by inducing a mitotic cell cycle arrest, ultimately resulting in p21-dependent cellular senescence. Importantly, silencing of CDCA3 also greatly sensitises NSCLC cell lines to cisplatin. In line with these in vitro data, NSCLC patients that have elevated levels of CDCA3 and are treated with cisplatin have a poorer outcome than patients with reduced levels of the protein. To improve patient response to cisplatin, we are exploring novel strategies to suppress CDCA3 expression in tumour cells.

      Conclusion:
      Our data highlight CDCA3 as a novel factor in mediating NSCLC. We propose that evaluating novel strategies to target CDCA3 may prove a useful strategy is enhancing the anti-tumour activity of platinum-based chemotherapy and may ultimately benefit patient outcomes by preventing cisplatin resistance.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P3.01 - Poster Session with Presenters Present (ID 469)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Biology/Pathology
    • Presentations: 1
    • +

      P3.01-064 - The Overexpression and Cleavage of SASH1 by Caspase-3 Stimulates Cell Death in Lung Cancer Cells (ID 5811)

      14:30 - 15:45  |  Author(s): J. Burgess

      • Abstract
      • Slides

      Background:
      SASH1 (SAM and SH3 domain-containing protein 1) is a recently identified gene with tumour suppressor properties and has a role in induction of apoptosis. Previous work has shown that 90 % of lung cancer cell lines have a decrease in SASH1 mRNA levels (Zeller et al., 2003), however little characterisation of SASH1 function in lung cancer has been undertaken.

      Methods:
      We evaluated SASH1 expression in transformed normal and malignant non-small cell lung cancer cell lines. We also utilised cell based assays to study the effects of altered SASH1 levels on cell survival and proliferation. Identification of a novel SASH1 targeting drug was performed through connectivity mapping.

      Results:
      SASH1 protein expression was down regulated in two of the five lung cancer cell lines compared to immortalized normal bronchial epithelial cells. Prognoscan assessment identified decreased SASH1 mRNA expression reduced patient survival. The depletion of SASH1 in lung cells resulted in a significant increase in cellular proliferation in cancer lung cells. Connectivity mapping predicted the drug Chloropyramine would lead to an increase in SASH1 expression. We demonstrated that Chloropyramine upregulates SASH1 in malignant cell lines. In keeping with this we have demonstrated the Chloropyramine inhibited lung cancer proliferation in vitro. We also explored the role of SASH1 in apoptosis. Following ultraviolet light exposure SASH1 is cleaved by Caspase-3. The C-terminal fragment of SASH1 then translocates from the cytoplasm to the nucleus where it associates with chromatin. The overexpression of wild type SASH1 or cleaved SASH1 amino acids 231-1247 leads to an increase in apoptosis, however loss of the SASH1 cleavage site and/or nuclear translocation prevents this initiation of apoptosis. Mechanistically SASH1 cleavage is required for the translocation of the transcription factor NF-κB to the nucleus. The use of the NF-κB inhibitor DHMEQ demonstrated that the effect of SASH1 on apoptosis was dependent on NF-κB, indicating a co-dependence between SASH1 and NF-κB for this process.

      Conclusion:
      We have shown that SASH1 contributes to apoptosis via a NF-κB-dependent mechanism. Agents that upregulate SASH1, such as chloropyramine or SASH1 gene therapy, are potential novel approaches to the management of NSCLC in the future.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.