Virtual Library

Start Your Search

M. Scheffler



Author of

  • +

    MA07 - ALK-ROS1 in Advanced NSCLC (ID 385)

    • Event: WCLC 2016
    • Type: Mini Oral Session
    • Track: Advanced NSCLC
    • Presentations: 1
    • Now Available
    • +

      MA07.05 - EUCROSS: A European Phase II Trial of Crizotinib in Advanced Adenocarcinoma of the Lung Harboring ROS1 Rearrangements - Preliminary Results (Now Available) (ID 4451)

      M. Scheffler

      • Abstract
      • Presentation
      • Slides

      Background:
      ROS1 rearrangements are present in the tumors of 1-2% of patients with lung adenocarcinoma (LAD). This patient subgroup is characterized by non-smoking history and younger than average age compared to the overall NSCLC population. In a phase I trial the ALK/ROS1/MET inhibitor crizotinib has shown to be highly effective in these patients (NCT00585195). EUCROSS is a prospective phase II trial of the Lung Cancer Group Cologne in collaboration with the Spanish Lung Cancer Group to evaluate crizotinib in ROS1-positive LAD. Here, we present preliminary data on efficacy and safety.

      Methods:
      Patients with advanced LAD harboring ROS1 rearrangements as confirmed by central FISH were eligible for the trial irrespectively of the number of prior treatment lines. Patients received treatment with crizotinib 250 mg BID - doses were adapted for management of AEs. Trial design: Fleming’s single stage phase II design. Primary endpoint: ORR (95% CI, H~0~: ORR≤20% vs. H~1~: ORR>20%). Secondary endpoints: a.o. PFS, OS and safety. All efficacy endpoints were assessed by investigator’s RECIST v1.1 and will be analyzed by IRB at a later stage. Baseline tumor tissue was analyzed by DNA-sequencing to identify the translocation Partners of ROS1, to validate FISH results and to identify additional biomarkers for prediction of response. Data-cut off for this report was March 2016.

      Results:
      In total, 34 patients were enrolled in EUCROSS at the time of data cut-off. Twenty-nine patients were eligible for efficacy assessment. Tumor tissue of 20 of these patients was suitable for further sequencing - 18 were sequenced positive for ROS1 fusion. The fusion partners involved were CD74 (N=9;50%), EZR (N=4;22%), SCL34A2 (N=3;17%), TPM3 and SDC4(N=1;6% each). The investigator assessed ORR was 69% (95% CI, 49.1-84.3) in the overall trial population and 83% (95% CI, 67.7-94.2) in the ROS1-positive by sequencing population (N=18;P=0.324 for difference of ORR). Three patients (10.3%;95% CI, 3.6-26.4) exhibited primary progression, two of them were sequenced ROS1-negative. All patients were included in the safety population (N=34). Most common AEs irrespectively of relatedness or grade were visual disorders (N=16;48%), edema (N=14;41%), diarrhea (N=13;38%) and bradycardia (N=11;32%).

      Conclusion:
      Crizotinib is a highly effective and safe treatment in the subset of ROS1 rearranged NSCLC patients as determined by FISH and DNA-sequencing. Although, the number of patients with tissue available for sequencing was low at the time of data cut-off, sensitivity and specificity support sequencing as the potential new gold-standard for the identification of clinically relevant ROS1 gene-rearrangements.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P2.03b - Poster Session with Presenters Present (ID 465)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Advanced NSCLC
    • Presentations: 3
    • Now Available
    • +

      P2.03b-028 - Improved Overall Survival Following Implementation of NGS in Routine Diagnostics of Advanced Lung Cancer in Germany: Results of the NGM (ID 5304)

      M. Scheffler

      • Abstract

      Background:
      Broad implementation of molecular diagnostics and personalized cancer care is hampered by insufficient molecular screening, missing reimbursement for comprehensive molecular testing and lack of access to appropriate drugs. The Network Genomic Medicine (NGM) Lung Cancer is a health care provider network offering comprehensive next generation sequencing (NGS)-based multiplex genotyping on a central diagnostics platform in Cologne for all inoperable lung cancer patients (pts) in Germany.

      Methods:
      The NGS panel used in NGM consists of 14 genes and 102 amplicons to cover potentially targetable aberrations. Mutation analyses were run on an Illumina (MySeq) platform, while FISH analyses were performed separately. In 2015, we have started the second outcome evaluation for all NGM pts who had received NGS-based molecular diagnostics. In particular, we have focused on molecular subgroups of EGFR, ALK, BRAF-V600E, HER2 and ROS1 positive pts and especially on NGM pts treated in clinical trials.

      Results:
      From 2013-2015 6210 lung cancer pts (n=4244 non-squamous NSCLC) were genotyped. Preliminary data show the overall survival (OS) of 934 NSCLC pts including of 110 NSCLC pts treated in clinical trials. For 108 EGFR+ pts, the OS of clinical trials pts treated with so called 3[rd] generation EGFR-TKIs was 55 months (n=25) vs 22 months in control group (n=83) (p=0,002; mean OS: 29 months; 95%CI: 36-83 months). For 85 ALK+ pts, the OS of pts treated in clinical trials was 35 months (n=19) compared to OS of 23 months for 45 pts treated with one ALK inhibitor and 8 months for 19 pts treated with no ALK inhibitors (P<0,0001; mean OS: 22 months; 95%CI: 22-33 months).

      Conclusion:
      While the first NGM evaluation in 2013 already showed a survival benefit of 2 years in EGFR-TKI treated EGFR+ pts compared to chemotherapy, our current evaluation in pts treated with 3[rd] generation EGFR-TKIs after acquired resistance to 1[st] gen. EGFR-TKIs shows the significant increasing of the OS. Similarly, we show a significant longer OS for ALK+ pts treated with 2 ALK inhibitors compared to treatment with one or no ALK inhibitor. Further results of this ongoing NGM evaluation will be provided.

    • +

      P2.03b-036 - Analysis of Potentially Targetable Mutations in 821 Patients with Squamouscell Lung Cancer Undergoing Routine NGS-Based Molecular Diagnostics (Now Available) (ID 5939)

      M. Scheffler

      • Abstract
      • Slides

      Background:
      Molecular multiplex diagnostics is increasingly integrated now in routine diagnostics of lung adenocarcinoma (LAD). Although targetable aberrations are predominantly found in LAD, they have also been reported in squamouscell lung carcinoma (SQLC). We here present results of routine molecular multiplex diagnostics of advanced stage SQLC obtained within the German Network Genomic Medicine (NGM) and compare them with results reported previously in early stage SQLC in The Cancer Genome Atlas (TCGA) LUSC cohort.

      Methods:
      Tumor biopsies of 821 patients consecutively diagnosed within NGM were analyzed with next-generation parallel sequencing (NGS). The panel consisted of 102 amplicons and 14 genes: KRAS, PIK3CA, BRAF, EGFR, ERBB2, NRAS, DDR2, TP53, ALK, CTNNB1, MET, AKT1, PTEN and MAP2K1. In subsets of patients, fluorescence in-situ hybridization (FISH) was performed for amplification detection of FGFR1 and MET. We queried the TCGA dataset with respect to the panel used and compared the findings. For NGM patients, therapy and outcome are also reported..

      Results:
      In addition to the expected frequencies of TP53, DDR2, PTEN and PIK3CA mutations, we detected EGFR mutations in 3.2% and BRAF mutations in 1.8%. Unlike the TCGA dataset, where the frequencies were 2.8% and 3.9%, respectively, the detected mutations in the NGM cohort included also activating targetable mutations (i. e., EGFR del19 and L858R, and BRAF V600E). FISH data revealed presence of MET amplification in 14.2% and of FGFR1 amplification in 20.0%. The association and correlation of these aberrations with clinical findings and prognosis as well as with PD-L1 expression status and mutational load will be presented.

      Conclusion:
      Our data give an overview on the presence and clinical characteristics of targetable mutations in advanced SQLC and show, that such mutations occur in a substantial amount of patients. Thus, molecular multiplex diagnostics might be indicated also in SQLC in order to use all therapeutic options available in these patients.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      P2.03b-076 - MAP2K1 Mutations in NSCLC: Clinical Presentation and Co-Occurrence of Additional Genetic Aberrations (Now Available) (ID 5885)

      M. Scheffler

      • Abstract
      • Slides

      Background:
      The clinical impact of somatic MAP2K1 mutations remain uncertain in non-small cell lung cancer (NSCLC). Activation of the MEK1-cascade might play a central role in resistance to targeted BRAF V600E, EML4-ALK and EGFR T790M inhibition, but so far, only MAP2K1 K57N could be identified and linked functionally for this target. Clinical trials combining specific inhibitors for predefined NSCLC subgroups with MEK inhibitors are continuous. We performed this study to characterize MAP2K1-mutated NSCLC clinically and molecularly.

      Methods:
      Tumor tissue collected consecutively from 4590 NSCLC patients within a molecular screening network between 07/2014 and 07/2015 was analyzed for MAP2K1 mutations using next-generation sequencing (NGS) with a set of 102 amplicons in 14 genes. Clinical and molecular characteristics of these patients are described and compared with an internal control group of NSCLC patients and an independent control Group of The Cancer Genome Atlas (TCGA).

      Results:
      We classified 20 (0,4%) patients with MAP2K1 mutations. They were frequently found in adenocarcinoma (n=19) and were expressively associated with smoking. The most common MAP2K1 mutation was K57N. The majority of patients (n=15) had additional oncogenic driver aberrations, including mutations in ALK, EGFR or BRAF, and MET amplification. TP53 mutations are found in 11 patients. In 5 patients (25.0%) MAP2K1 occured exclusively. TCGA analysis reveals additional 14 patients with MAP2K1 mutations, whereof 11 have additional TP53 mutations and two have KRAS mutations. The majority of patients in our cohort has stage IV NSCLC, all patients in TCGA receive surgery for localized stages.

      Conclusion:
      This analysis displays that MAP2K1 mutations might occur at any stage of NSCLC and can be associated with targetable aberrations in smoking stage IV patients. Combination of targeted therapy against the known driver aberrations with MEK inhibitors might be an hopeful therapeutic outlook in the near future.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    YI01b - Scientific Mentoring (ID 415)

    • Event: WCLC 2016
    • Type: Young Investigator Session
    • Track:
    • Presentations: 1
    • Now Available
    • +

      YI01b.02 - Expectations from a Young Investigator (Now Available) (ID 6740)

      M. Scheffler

      • Abstract
      • Presentation
      • Slides

      Abstract:
      Expectations from a Young Investigator Over the last two decades, research has pushed lung cancer investigations from the shallows of cancer treatment to one of the most innovative positions in oncology. The improvements in molecular diagnostics, in targeted therapy and immunotherapy with the linked creeping decline of traditional chemotherapy act as a model for many other tumor entities. Joined by this paradigm shift is a demographic change to young investigators who start their career in the innovative fields of lung cancer research instead of thinking in the traditional chemotherapy-based fashion. Nevertheless, in order to detect the needs and expectations from young investigators, even the definition of "young" is hard to handle, and subjective expectations might be biased by the socioeconomic background of the investigator. We therefore set out to find a way to present more robust and reliable data on the topic. We created an online questionnaire covering age, experiences, interests, and of course needs and expectations of young investigators. The expectations focus on research topics, treatment options, mentorships and social networking. The questionnaire will be forwarded to 20 investigators in the EU, Asia, South America and the US with link to the emerging fields of lung cancer research, in order to forward it to participants who they consider young in both clinical and preclinical investigations. For subgroup analyses, we will include students with interest in this field, too. Results will be analyzed by the presenters. The poll will be open until one week of the WCLCs Young Investigator's Scientific Mentoring Session, and results of this interim analysis will be presented by this talk. Nevertheless, all participants of the WCLC 2016 are invited to answer the questionnaire during the Conference, and a final data cut will be made at December 10th, 2016. We are aware of the potential biases in online polls. A valid e-mail address and the source of the online link (i. e., who was the "supervisor") are necessary. As an incentive to participate properly, we offer all participants to be part of the "WCLC young Investigator Expectations Network (WIEN)" which will coauthor the final manuscript. As we question the expectations of how lung cancer research will work in five years, it is intended to repeat the poll in a regular manner, maybe yearly. We expect a view on the expectations from young investigators worldwide and a feeling of their needs for the future.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.