Virtual Library

Start Your Search

Niki Karachaliou



Author of

  • +

    FP12 - Tumor Biology and Systems Biology - Basic and Translational Science (ID 188)

    • Event: WCLC 2020
    • Type: Posters (Featured)
    • Track: Tumor Biology and Systems Biology - Basic and Translational Science
    • Presentations: 1
    • Moderators:
    • Coordinates: 1/28/2021, 00:00 - 00:00, ePoster Hall
    • +

      FP12.03 - SRC-Homology 2 Domain-Containing Phosphatase 2 (SHP2) in Resected Lung Adenocarcinoma (LUAD) (ID 992)

      00:00 - 00:00  |  Author(s): Niki Karachaliou

      • Abstract
      • Slides

      Introduction

      Epidermal growth factor (EGFR)-mutant lung adenocarcinomas (LUADs) display impaired phosphorylation of extracellular signal-regulated kinase (ERK) and SRC-homology 2 domain-containing phosphatase 2 (SHP2) in comparison with EGFR wild-type LUADs. However, the function of SHP2 in early EGFR-mutant LUADs and EGFR wild-type LUADs has not been reported. We posit that SHP2 mRNA expression could be a predictive marker in resected EGFR-mutant LUADs versus EGFR wild-type patients (pts).

      Methods

      We examined 267 resected LUADs from Japan and Spain. mRNA expression levels of AXL, MET, CDCP1, STAT3, YAP1 and SHP2 were analyzed by quantitative reverse transcriptase polymerase chain reaction (PCR). EGFR mutant cell lines were investigated for their activity of SHP2.

      Results

      Among the 267 enrolled pts, 100 (37.3%) were EGFR-mutant LUADs. Five-year recurrence-free survival (RFS) and overall survival (OS) were lower for EGFR-mutant LUADs with high SHP2 mRNA levels (hazard ratio= 1.83 and 2.28, respectively. p= 0.03 and p=0.04). However, SHP2 was not associated with RFS nor OS in the 167 wild-type EGFR LUADs. In EGFR-mutant cells, RMC-4550 (SHP2 inhibitor) plus erlotinib showed synergism via inhibition of AKT (S473) and ERK1/2 (T202/Y204). While erlotinib displaces SHP2 into the nucleus, either RMC-4550 alone, or in combination with erlotinib, restores SHP2 into the cytoplasm membrane, limiting AKT and ERK activation.

      Conclusion

      High SHP2 mRNA is related to shorter RFS and OS in EGFR-mutant LUADs, but not in EGFR wild-type LUADs. The findings indicate that the addition of SHP2 inhibitors could improve adjuvant therapy in EGFR-mutant LUADs.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.