Virtual Library

Start Your Search

Wenjing Wang



Author of

  • +

    JCSE01 - Joint IASLC-CSCO-CAALC Session (ID 63)

    • Event: WCLC 2019
    • Type: Joint IASLC-CSCO-CAALC Session
    • Track:
    • Presentations: 1
    • +

      JCSE01.25 - TP53/KMT2C Co-Mutation as a Novel Biomarker for Immunotherapy in Non-Small Cell Lung Cancer Patients (ID 3862)

      07:00 - 11:15  |  Author(s): Wenjing Wang

      • Abstract
      • Slides

      Abstract
      Background
      Immune checkpoint inhibitors (ICIs) have shown remarkable antitumor effects in non-small cell lung cancer (NSCLC), however only a subset of patients respond. Genomic alterations (GAs) detected by targeted next-generation sequencing (NGS) is increasingly used in clinical practice, but its correlation with recognized immune biomarkers and predictive value for ICIs response in NSCLC is unclear.

      Methods
      FFPE tumor and matched blood samples of 637 NSCLC patients (84 squamous cell and 553 non-squamous cell) were collected for targeted NGS panel sequencing from December 2017 to January 2019. GAs including single nucleotide variations, short and long insertions/deletions, copy number variations and gene rearrangements were assessed. TMB high (TMB-H) was defined as ≥10 muts/Mb. Positive PD-L1 expression was defined as ≥1% of tumor cells with membranous staining (22C3/28-8, DAKO). Genomic data and ICIs treatment outcome from a 240 NSCLC patient cohort was derived from cBioPortal (MSKCC, J Clin Oncol 2018).

      Results
      In 637 NSCLC patients, the prevalence of PD-L1≥1% was 26.5% and the median TMB was 4.6 muts/Mb (IQR, 2.3-10). Recurrent TP53, KRAS, LRP1B and KEAP1 mutations were significantly correlated with higher TMB (p value). TP53, KRAS and KEAP1 mutations were significantly enriched in the TMB-H/PD-L1+ subset while STK11 mutations were enriched in TMB-H/PD-L1- subset (p value). KMT2C, also known as MLL3, belongs to the mixed‐lineage leukemia (MLL) family of histone methyltransferases and its GAs was found in 5% of our cohort. Tumors with KMT2C and TP53 co-mutations (co-MUT) had a significantly higher TMB (15.1 muts/Mb) than TP53/KMT2C single-MUT (8.7 muts/Mb) and TP53/KMT2C co-WT (3.1 muts/Mb) tumors. Moreover, TMB-H/PD-L1+ subset was enriched in KMT2C and TP53 co-MUT (25%) comparing to TP53/KMT2C single-MUT (14.7%) and TP53/KMT2C co-WT (3.3%) tumors. Survival analysis from public clinical trials confirmed that patients with TP53/KMT2C co-MUT had remarkable clinical benefit to ICIs in both progression free survival (PFS) and durable clinical benefit (DCB). The median PFS was 7.3, 4.2 and 2.5 months for TP53/KMT2C co-MUT, TP53/KMT2C single-MUT and TP53/KMT2C co-WT patients, respectively (p=0.0032). TP53/KMT2C co-MUT was an independent variable of PFS (TP53/KMT2C co-MUT vs. TP53/KMT2C co-WT, HR: 0.47, 95%CI: 0.25-0.89, p=0.0199). Furthermore, TP53 with KMT2C or KRAS co-MUT expanded the patient population benefiting from ICIs (mPFS = 7.2 months, p=0.00042; DCB = 51.2%, p= 0.0195).

      Conclusion
      This study provides evidence that TP53/KMT2C co-MUT may serve as a predictive biomarker for ICIs in NSCLC. GAs detected by targeted NGS could illuminate insight for immunotherapy.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P1.14 - Targeted Therapy (ID 182)

    • Event: WCLC 2019
    • Type: Poster Viewing in the Exhibit Hall
    • Track: Targeted Therapy
    • Presentations: 1
    • Moderators:
    • Coordinates: 9/08/2019, 09:45 - 18:00, Exhibit Hall
    • +

      P1.14-34 - The Landscape of MET Alterations in Chinese Non-Small Cell Lung Cancer Patients (ID 2088)

      09:45 - 18:00  |  Author(s): Wenjing Wang

      • Abstract

      Background

      Mesenchymal-to-epithelial transition (MET) is a therapeutic target in non-small cell lung cancer (NSCLC), which has a variety of genomic variants. MET amplification and MET exon 14 skipping (MET ex14) have been notable for meaningful clinical response to MET inhibitor therapy. However, comprehensive molecular characteristics of MET variants of Chinese NSCLC patients are not well understood.

      Method

      FFPE tumor and matched blood samples from 3433 Chinese NSCLC patients were collected for targeted next generation sequencing (NGS). Genomic variants including single nucleotide variations (SNV), short/long insertion/deletions (Indel), copy number alterations and gene rearrangements were analyzed. MET amplification, MET ex14 skipping and gene fusion were defined as MET druggable variations. Tumor mutational burden (TMB) was analyzed in all patients.

      Result

      In total, MET variations were identified in 3.3% (115/3433) of Chinese NSCLC patients. Mutation rates varied in different histological types: 3.3% (N=95)in adenocarcinoma, 1.7% (N=7) in squamous cell carcinoma, 10.1% (N=7) in adenosquamous carcinoma and 15.0% (N=3) in sarcomatoid carcinoma. MET druggable variations had been found enriched at an advanced clinical stage accounted for 3.8% of stage IV cases while only 1.2% of cases at earlier stages. Consistent to the previous studies, MET amplification and MET ex14 skipping were identified in 1.5% and 0.8% of NSCLC patients respectively. MET rearrangement was identified in seven patients in this cohort with partner genes as CD47, ST7, TMEM168, MYTKL and FOXP2. Moreover, 39.5% of MET point mutations resulting in pathway activation (D1010, D1228 and H1094) in this cohort could then be potential targets for MET inhibitors. Twenty six percent of all MET variations co-mutated with EGFR sensitive mutations, which may be a resistance mechanism for EGFR-TKI therapy. The median TMB of patients with MET variations was 6.1 muts/Mb. Cases with MET SNV/Indel alterations had higher median TMB than wild type MET (8.1 vs. 4.6 muts/Mb, respectively, P = 0.03). In particular, a newly acquired MET fusion was detected in a 60-year old female NSCLC patient when disease progressed on TKI against the original EGFR L858R-mutant. She achieved a partial response to crizotinib plus osimertinib treatment.

      Conclusion

      Our study revealed that MET variations occurred in 3.3% of Chinese NSCLC patients. Besides MET amplification and MET ex14 skipping, MET rearrangements and targetable point mutations we identified might be potential therapeutic targets for these patients.

  • +

    P2.04 - Immuno-oncology (ID 167)

    • Event: WCLC 2019
    • Type: Poster Viewing in the Exhibit Hall
    • Track: Immuno-oncology
    • Presentations: 1
    • Moderators:
    • Coordinates: 9/09/2019, 10:15 - 18:15, Exhibit Hall
    • +

      P2.04-20 - TP53/KMT2C Co-Mutation as a Novel Biomarker for Immunotherapy in Non-Small Cell Lung Cancer Patients (ID 2081)

      10:15 - 18:15  |  Author(s): Wenjing Wang

      • Abstract
      • Slides

      Background

      Immune checkpoint inhibitors (ICIs) have shown remarkable antitumor effects in non-small cell lung cancer (NSCLC), however only a subset of patients respond. Genomic alterations (GAs) detected by targeted next-generation sequencing (NGS) is increasingly used in clinical practice, but its correlation with recognized immune biomarkers and predictive value for ICIs response in NSCLC is unclear.

      Method

      FFPE tumor and matched blood samples of 637 NSCLC patients (84 squamous cell and 553 non-squamous cell) were collected for targeted NGS panel sequencing from December 2017 to January 2019. GAs including single nucleotide variations, short and long insertions/deletions, copy number variations and gene rearrangements were assessed. TMB high (TMB-H) was defined as ≥10 muts/Mb. Positive PD-L1 expression was defined as ≥1% of tumor cells with membranous staining (22C3/28-8, DAKO). Genomic data and ICIs treatment outcome from a 240 NSCLC patient cohort was derived from cBioPortal (MSKCC, J Clin Oncol 2018).

      Result

      In 637 NSCLC patients, the prevalence of PD-L1≥1% was 26.5% and the median TMB was 4.6 muts/Mb (IQR, 2.3-10). Recurrent TP53, KRAS, LRP1B and KEAP1 mutations were significantly correlated with higher TMB (p value). TP53, KRAS and KEAP1 mutations were significantly enriched in the TMB-H/PD-L1+ subset while STK11 mutations were enriched in TMB-H/PD-L1- subset (p value). KMT2C, also known as MLL3, belongs to the mixed‐lineage leukemia (MLL) family of histone methyltransferases and its GAs was found in 5% of our cohort. Tumors with KMT2C and TP53 co-mutations (co-MUT) had a significantly higher TMB (15.1 muts/Mb) than TP53/KMT2C single-MUT (8.7 muts/Mb) and TP53/KMT2C co-WT (3.1 muts/Mb) tumors. Moreover, TMB-H/PD-L1+ subset was enriched in KMT2C and TP53 co-MUT (25%) comparing to TP53/KMT2C single-MUT (14.7%) and TP53/KMT2C co-WT (3.3%) tumors. Survival analysis from public clinical trials confirmed that patients with TP53/KMT2C co-MUT had remarkable clinical benefit to ICIs in both progression free survival (PFS) and durable clinical benefit (DCB). The median PFS was 7.3, 4.2 and 2.5 months for TP53/KMT2C co-MUT, TP53/KMT2C single-MUT and TP53/KMT2C co-WT patients, respectively (p=0.0032). TP53/KMT2C co-MUT was an independent variable of PFS (TP53/KMT2C co-MUT vs. TP53/KMT2C co-WT, HR: 0.47, 95%CI: 0.25-0.89, p=0.0199). Furthermore, TP53 with KMT2C or KRAS co-MUT expanded the patient population benefiting from ICIs (mPFS = 7.2 months, p=0.00042; DCB = 51.2%, p= 0.0195).

      Conclusion

      This study provides evidence that TP53/KMT2C co-MUT may serve as a predictive biomarker for ICIs in NSCLC. GAs detected by targeted NGS could illuminate insight for immunotherapy.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.