Virtual Library

Start Your Search

J. Jack Lee



Author of

  • +

    OA15 - Targeted Agents and Immunotherapy for Small Cell Lung Cancer (ID 152)

    • Event: WCLC 2019
    • Type: Oral Session
    • Track: Small Cell Lung Cancer/NET
    • Presentations: 1
    • Now Available
    • +

      OA15.04 - Genomic and TCR Intratumor Heterogeneity of Small-Cell Lung Cancer by Multiregion Sequencing: An Association with Survival (Now Available) (ID 1458)

      14:30 - 16:00  |  Author(s): J. Jack Lee

      • Abstract
      • Presentation
      • Slides

      Background

      Small cell lung cancer (SCLC) is an aggressive cancer. Although sensitive to initial therapy, recurrence is almost inevitable. The molecular mechanisms underlying recurrence are unknown. We have previously demonstrated that complex genomic and T cell receptor (TCR) intratumor heterogeneity (ITH) was associated with increased risks of relapse in non-small cell lung cancers (NSCLC). Genomic ITH and TCR architecture of SCLC and its clinical impact have not been well studied, largely due to lack of tumor specimens as surgery is rarely used to treat SCLC.

      Method

      We performed multiregion whole-exome sequencing and TCR sequencing of 49 tumor samples from 18 resected limited-stage SCLCs to delineate the immunogenomic ITH of SCLC. We compared the results to those in NSCLC and assessed the association of genomic and TCR attributes with patient’s survival.

      Result

      On average, 544 mutations/sample were detected. The median proportion of trunk mutations (mutations identified in all regions within the same tumors) was 80.4% versus 70% in NSCLC (TRACERx, Jamal-Hanjani, NEJM, 2017, p=0.08) and all TP53 and RB1 mutations were trunk mutations, suggesting these mutations were early events during carcinogenesis of this cohort of SCLCs. A higher non-synonymous tumor mutational burden (TMB) was associated with a higher T cell density (infiltration) in the tumor (r=0.46, p=0.005). Compared to the TCR repertoire of NSCLC (Reuben, WCLC, 2017), these SCLC tumors demonstrated significantly lower T-cell density (0.05 versus 0.24, p<0.0001), richness (diversity, 1,043 versus 3,666, p<0.0001) and clonality (reactivity, average 0.02 versus 0.15, p<0.0001) despite similar non-synonymous TMB (average 187 in SCLC versus 176 mutations/sample in NSCLC). Only 0.2% to 14.6% of T cells were detectable across all regions from the same tumors, suggesting substantial TCR ITH. Jaccard index (JI), a parameter quantifying TCR ITH was significantly lower in SCLC than in NSCLC (0.06 versus 0.1, p<0.0001) implying higher level of TCR ITH in SCLC than NSCLC. Interestingly, higher T-cell density, richness or clonality appeared to be associated with lower risk of recurrence numerically. Furthermore, higher TCR JI (less degree of ITH) was associated with significantly longer overall survival (HR=0.15, p=0.04).

      Conclusion

      Limited-stage SCLC tumors have distinct TCR repertoire and genomic ITH architecture. Overall, SCLC may have a more pronounced immunosuppressive microenvironment and higher level of TCR repertoire ITH than NSCLC. Nevertheless, higher degree of T cell infiltration and clonal expansion as well as more homogeneous T cell response may be associated with more favorable clinical outcome in patients with limited-stage SCLC.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P1.04 - Immuno-oncology (ID 164)

    • Event: WCLC 2019
    • Type: Poster Viewing in the Exhibit Hall
    • Track: Immuno-oncology
    • Presentations: 1
    • Moderators:
    • Coordinates: 9/08/2019, 09:45 - 18:00, Exhibit Hall
    • +

      P1.04-07 - Immune Suppressive Microenvironment and Highly Clonal Concordance of TCR Repertoire in Brain Metastases from Non-Small Cell Lung Cancer (ID 2018)

      09:45 - 18:00  |  Author(s): J. Jack Lee

      • Abstract
      • Slides

      Background

      The tumor immune microenvironment (TIME) of lung cancer brain metastasis is largely unexplored. We performed immune profiling and sequencing analysis of paired resected primary tumors and brain metastases of non-small cell lung carcinoma (NSCLC).

      Method

      TIME profiling of archival formalin-fixed and paraffin embedded specimens of paired primary tumors and brain metastasis from 39 patients with surgically resected NSCLCs was performed using a 770 immune gene expression panel (NanoString Technologies, Seattle, WA) and by T cell receptor beta repertoire (TCRß) sequencing (Adaptive Biotechnologies, Seattle, WA). Immunohistochemistry was performed for validation. Targeted sequencing was performed to catalog hot spot mutations in cancer genes (ThermoFisher Scientific, Waltham, MA).

      Result

      Somatic hot spot mutations were mostly shared between both tumor sites (28/39 patients; 71%). We identified 161 differentially expressed genes, indicating inhibition of dendritic cell maturation, Th1, and leukocyte extravasation signaling pathways, in brain metastases compared to primary tumors (p < 0.01). The proinflammatory cell adhesion molecule vascular cell adhesion protein 1 was significantly suppressed in brain metastases compared to primary tumors. Brain metastases exhibited lower T cell and elevated macrophage infiltration compared with primary tumors (p < 0.001). T cell clones were expanded in 64% of brain metastases compared with their corresponding primary tumors. Further, while TCR repertoires were largely shared between paired brain metastases and primary tumors, T cell densities were sparse in the metastases.

      Conclusion

      We present findings that the TIME in brain metastases is immunosuppressed when compared to matched primary tumors in NSCLC patients, and that thus may help guide immunotherapeutic strategies for NSCLC brain metastases.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.