Virtual Library

Start Your Search

CAROLINE Caramella



Author of

  • +

    MA05 - Update on Clinical Trials and Treatments (ID 123)

    • Event: WCLC 2019
    • Type: Mini Oral Session
    • Track: Mesothelioma
    • Presentations: 1
    • Now Available
    • +

      MA05.11 - Safety and Efficacy of Nintedanib in Combination with Pembrolizumab in Patients with Refractory/Relapsing Malignant Pleural Mesothelioma (Now Available) (ID 2170)

      13:30 - 15:00  |  Author(s): CAROLINE Caramella

      • Abstract
      • Presentation
      • Slides

      Background

      Malignant pleural mesothelioma (MPM) is an aggressive disease with no standard of care after progression to first line pemetrexed and platinum-based chemotherapy. Combinations between anti-angiogenic agents and immunotherapy are being developed as angiogenesis and immunosuppression influence each other leading to a more powerful anti-tumor response. Both Nintedanib and Pembrolizumab have been investigated as single agents or in different treatment combinations in MPM patients with interesting activity.

      Method

      The PEMBIB trial is a multi-centric open-label non-randomized basket phase 1 trial evaluating the combination of nintedanib with pembrolizumab in multiple tumor types. The safety and activity of the dose escalation part of the study were reported at AACR & ASCO meetings in 2018 with an established DLT defined as grade 3 alanine and/or aspartate aminotransferase elevation (ALT/AST). The recommended phase 2 dose is set at 150 mg BID of nintedanib with 200 mg flat dose of pembrolizumab. We would like to report the safety and activity of one of the expansion cohorts of patients with relapsing/refractory MPM which has now been completed. Eligible MPM patients were 18 years or older with an ECOG performance status of 0 or 1, histologically proven MPM that relapsed after at least one line of pemetrexed and platinum-based combination, specific anti-angiogenic eligibility criteria such as no radiographic evidence of cavitary/necrotic or tumors with local invasion of major blood vessels.

      Updated results on the safety profile and efficacy of this anti-angiogenic and anti-PD-1 combination therapy including overall response rate as per RECIST, irRC and mRECIST criteria, disease control rate will be presented at the meeting.

      Result

      The first patient from the MPM cohort was enrolled in July 2017 and the last one in April 2019. Thirty-one eligible MPM patients have been evaluable at the data cut off onJuly 2019, one of them had been enrolled since the dose-escalation part at dose level of 200mg. The age at inclusion was 68 (ranging from 38 to 85), 68% of the patients having an ECOG of 1 and 58% of the histological type was epithelioid. The most frequent adverse events (grades 1, 2 and 3) related to any of the combination drugs were liver enzymes increase, fatigue, decreased appetite, nausea, diarrhea and hypothyroidism. There were two cases of myocarditis, one of grade 3 (pembrolizumab related) and one of grade 5(pembrolizumab and nintedanib related). At the time of the data analysis the efficacy data shows six partial responses (overall response rate of 21%) and seventeen stable disease (disease control rate at 61%.).

      Conclusion

      The combination of Nintedanib with Pembrolizumab shows promising activity in relapsed MPM patients .The toxicity profile appear consistent with previous reports of anti-angiogenic agents and immunotherapy combination.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MA21 - Non EGFR/MET Targeted Therapies (ID 153)

    • Event: WCLC 2019
    • Type: Mini Oral Session
    • Track: Targeted Therapy
    • Presentations: 1
    • Now Available
    • +

      MA21.09 - Tyrosine Kinase Inhibitors' Plasma Concentration and Oncogene-Addicted Advanced Non-Small Lung Cancer (aNSCLC) Resistance (Now Available) (ID 830)

      14:30 - 16:00  |  Author(s): CAROLINE Caramella

      • Abstract
      • Presentation
      • Slides

      Background

      The development of TKIs against driver molecular alteration has changed treatment paradigm in aNSCLC patients (pts). All tumors eventually progress and a resistance mechanism is identified in only a fraction of pts. Plasma concentration of TKI can decrease after chronic exposition but limited data are available. Our hypothesis is that an insufficient plasma exposure could contribute to tumor progression (PD).

      Method

      We assessed the plasma concentration of TKI in pts with aNSCLC harboring ALK rearrangement, EGFR or BRAF V600E mutation. We defined chronic exposure as a treatment administered > 3 months. Patients’ characteristics and co-medications were collected. Residual plasma concentrations were measured using Ultra Performance Liquid Chromatography coupled with tandem mass spectrometry validated methods. We compared results to currently recommended therapeutic targets and correlated exposure levels to treatment benefit.

      Result

      Between Apr. 2014 and Feb. 2019, 51 samples were prospectively collected (gefitinib n=11, osimertinib n=10, erlotinib n=13, crizotinib n=7, dabrafenib + trametinib n=5) in 41 pts. Median time of exposure was 20.3 months (range 2.18 - 67.813). Low plasma concentration was observed in 31 (61%) samples. Out of 14 samples collected in pts with ongoing benefit, 10 (71%) had low plasma exposure. Smoking status was associated with low plasma TKI concentration (P=0.01) whatever the TKI used. A total of 37 samples were collected at PD, 21 (57%) had low plasma exposure. The median time to treatment failure (TTF) in the ‘low exposure group' (n=31) was 14.9 months (95% CI 12.48 – 33.2) vs. 24.6 months (95% CI 8.65 -not reached (NR) in the ‘normal exposure group’ (P=0.55). No significant impact of protons pump inhibitors on TTF was found (p=0.12), including with gefitinib and erlotinib (p=0.76; n=24). In case of isolated brain PD (n=4), 3 pts (75%) had low plasma exposure. TKI dose was reduced in 14 pts because of toxicity, median TTF was 17.0 months (95% CI 10.4-NR) vs. 20.1 months (95% CI 10.4-59.8, P=0.45 in pts treated with standard dose. In the EGFR mutated aNSCLC population at PD (n=19), T790M resistance mutation was more frequent in the ‘normal exposure group’ (37.5%, n= 3/8,) than in the ‘low exposure group’ (9.1%, n=1/11), OR=0.13 95%CI (0.01-1.29), p=0.08.

      Conclusion

      TKI is underdose in the majority of aNSCLC patients at PD. Low TKI concentration were more frequent in pts without tumor resitance mechanism. Altogether, it suggests that low TKI exposure might contribute to PD.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MA25 - Precision Medicine in Advanced NSCLC (ID 352)

    • Event: WCLC 2019
    • Type: Mini Oral Session
    • Track: Advanced NSCLC
    • Presentations: 1
    • Now Available
    • +

      MA25.03 - Tumor-Infiltrating Lymphocytes (TIL) and Outcomes with Immunotherapy (ICI) or Chemotherapy in Advanced NSCLC (aNSCLC) Patients (Now Available) (ID 1374)

      14:30 - 16:00  |  Author(s): CAROLINE Caramella

      • Abstract
      • Presentation
      • Slides

      Background

      Tumor infiltrating lymphocytes (TIL) morphologically assessed is prognostic in early stages in several tumors. We previously reported the correlation of TIL with immune checkpoint inhibitors (ICI) outcomes in 98 advanced (a) NSCLC patients treated with ICI. We aimed to assess the role of TIL in a larger cohort treated with ICI, and in patients exclusively treated with chemotherapy (CT).

      Method

      aNSCLC patients with treated with single-agent ICI, with H&E stained sample available, were included between 11/2012 and 02/2017 in 3 cancer centers (immuno-cohort). Patient’s characteristics, biological data were retrospectively collected. The CT-cohort was extracted from the prospective MSN study (NCT02105168), between 06/2009 and 10/2016, enrolling aNSCLC patients treated with platinum-based CT, and tissue available. TIL in the stroma was evaluated in archival samples. High-TIL was defined as ≥10% density. Multivariate Cox model was used to study its prognostic values on overall and progression-free survival (OS, PFS).

      Result

      A total of 221 patients were included in the immuno-cohort: 142 (64%) male, with median (m) age of 63, 182 (84%) smokers, 161 (77%) PS≤1, 162 (63%) adenocarcinoma; 125 (57%) received ICI as second-line. High-TIL was observed in 49/221 (28%), non-assessable in 46. High-TIL had independent impact on OS and PFS (HR 0.40; 95% CI 0.25-0.63, P<0.0001). The mPFS and OS were 3.1months (mo.) (2.5-4.9) and 11mo. (7.0-13.2) respectively. The high-TIL group had mPFS of 13mo. (5.0-NR) vs. 2.2mo. (1.7-3.0) in low-TIL group (P<0.0001). High-TIL group had mOS not reached (NR) (12.2-NR) vs. 8.4 mo. (5.0-11.6) in low-TIL (P=0.007). The CT-cohort (N=189) had high-TIL in 103/189 (54%). The mPFS and mOS were 5.7mo. (4.9-6.7) and 11.7mo. (9.3-13.0) respectively, with no association with TIL.

      OS, Immuno-cohort (n=221) OS, Chemo-cohort (n=188)

      Hazard ratio (HR)
      95% confidence interval (CI)

      P-value

      HR
      95% CI

      P-value

      TIL
      ≥10% (high)

      0.46 (0.28-0.81) 0.006 1.03 (0.76-1.41) 0.84
      Age
      ≥65 y
      0.86 (0.50-1.46) 0.57 0.99 (0.72-1.38) 0.99
      Line of treatment*
      second line
      0.69 (0.44-1.09) 0.11 0.84 (0.60-1.16) 0.29

      N# metastatic sites
      >2

      1.40 (0.88-2.20) 0.16 1.50 (1.07-2.12) 0.02
      Performance status
      ≥2
      2.75 (1.73-4.37) <0.0001 1.94 (1.23-3.04) 0.004
      Histology
      Squamous
      1.13 (0.70-1.81) 0.62 1.09 (0.65-1.83) 0.75
      *Line of treatment: lines of immunotherapy for the Immuno-cohort; lines of chemotherapy for the Chemo-cohort.

      Conclusion

      High-TIL (≥10%) is a simple and accessible marker associated with better ICI outcomes, but not with CT. This suggests a potential predictive value that must be validated in larger prospectively studies.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MS07 - Controversies with Stereotactic Radiation in Early Stage Lung Cancer (ID 70)

    • Event: WCLC 2019
    • Type: Mini Symposium
    • Track: Treatment of Early Stage/Localized Disease
    • Presentations: 1
    • Now Available
    • +

      MS07.06 - Hot Topics in SBRT - Biopsy, Central Lesions, Radiologic Evaluation (Now Available) (ID 3479)

      14:00 - 15:30  |  Author(s): CAROLINE Caramella

      • Abstract
      • Presentation
      • Slides

      Abstract

      Stereotactic body radiotherapy (SBRT) has taken a growing place among treatment strategies in lung cancer in the past ten years because of its reported good results and favourable risk-benefit ratio especially in high-risk patients. This treatment modality allows delivering precisely a very high dose of radiation therapy to a targetable lesion, using a small number of fractions (3 to 5 more frequently). It has become the standard of care in medically inoperable peripheral early stage non-small cell lung cancer (NSCLC) patients. It is also frequently used in metastatic patients to treat cranial as well as extra-cranial metastases. Recently small randomised studies evaluating SBRT in oligometastatic NSCLC have shown promising results. Its role is now well accepted however there are situations where SBRT is still a subject of controversy and may be regarded as a hot topic

      because of the lack of pre-treatment biopsy

      because of less favourable outcome in central lesions and higher risk of complications

      because of the difficulty of radiologic evaluation

      When a peripheral lung nodule is discovered, suspect of being lung cancer, attempt should be made to obtain a pathological diagnosis before any treatment is proposed. Percutaneous CT–guided transthoracic biopsy is the established investigation in the work-up of pulmonary nodules, but there is a risk of complications such as pneumothorax (20-40%). However in patients with poor lung function (severe COPD, emphysema..), tissue sampling can be particularly challenging especially when the nodule is beyond the reach of conventional bronchoscopy. These are typically the patients that may be considered for SBRT, possibly presenting a contra-indication to transthoracic biopsy. Criteria for definition of a nodule as lung cancer without biopsy confirmation have been proposed such as progressive growth on CT imaging or presence of a hypermetabolic lesion on PET scan, and multidisciplinary tumor board consensus on the clinical diagnosis of lung cancer; there should be at least a 85% risk of malignancy, based upon accepted criteria [Postmus; Louie, Reid].

      If stereotactic radiotherapy in peripheral early NSCLC is presently a standard of care in inoperable patients due to co-morbidities and age, its role is more controversial for centrally located tumors because of less favorable outcome and higher risk of complications. In the past years, there has been a need to better classify these patients differentiating ultra-central from central lesions. The RTOG 0813 phase I/II trial, evaluated dose escalation in 120 patients with centrally-located non-small lung cancer with a five-fraction schedule that ranged from 10 to 12 Gy per fraction [Bezjak 2019]. The maximum tolerated dose was 60 Gy (5 fractions of 12 Gy), which was associated to a 2 year local control rate of 87.9%. They reported a fatal hemoptysis rate of 4%, potentially attributable to stereotactic radiotherapy [Bejzak 2015]. Even if the authors of this prospective study reported that outcome was comparable with that of patients with peripheral early-stage tumors, the risk of severe toxicity seems to be higher than in peripheral tumors. In another prospective phase II study, the Nordic hilus trial, which included 74 patients with central tumors within 1 cm from the proximal bronchial tree (PBT), the administered dose was 8 fractions of 7 Gy [Lindberg]. The authors reported a grade 4-5 toxicity of 19% among patients with tumor close to the main bronchus (ultra-central location) versus 3% in patients with tumor close to a lobar bronchus (central location). In a retrospective study of 88 patients with ultra-central lesions defined as tumors abutting PBT or trachea, or close to esophagus, a grade 3 toxicity or higher was reported in about 20% patients [Wang]. In another smaller retrospective study, where patients received 12 fractions of 5 Gy, outcome was quite good but toxicity ≥ grade 3 was reported in 38% of patients [Tekatli]. Thereby stereotactic radiotherapy for ultra-central tumors cannot be considered a standard treatment and more studies are needed for all central tumours to find the optimal dose regimen.

      Radiological evaluation after SBRT is performed mostly with chest CT scan, and changes occurring early and/or late are very common but can be tricky for radiologists as well as clinicians [Ronden,Febbo]. If FDG PET-CT is well established as staging tool prior to treatment, it is generally not used for surveillance. It may be useful though to differentiate local recurrence from radiation-induced lung opacity. Ideally, a treatment failure suspicion should be confirmed with a biopsy.

      These hot topics regarding SBRT show the difficulty to include patients into prospective trials; efforts have been made and should be pursued.

      References

      Postmus PE, Kerr KM, Oudkerk M, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017;28(suppl_4):iv1-iv21.

      Louie AV, Senan S, Patel P, et al. When is a biopsy-proven diagnosis necessary before stereotactic ablative radiotherapy for lung cancer?: A decision analysis. Chest 2014; 146(4):1021-1028.

      Reid M, Choi HK, Han X et al. Development of a Risk Prediction Model to Estimate the Probability of Malignancy in Pulmonary Nodules Being Considered for Biopsy. Chest 2019. [Epub ahead of print]

      Lindberg K, P.Bergström, OT Brustugun et al. The Nordic HILUS-Trial - First Report of a Phase II Trial of SBRT of Centrally Located Lung Tumors. J Thorac Oncol 2017;12(15) Abstract S340.

      Bezjak A, Paulus R, Gaspar LE, et al. Safety and efficacy of a five-fraction stereotactic body radiotherapy schedule for centrally located non-small-cell lung cancer: NRG Oncology/RTOG 0813 trial. J Clin Oncol 2019;37(15):1316-1325.

      C. Wang, B. Sidiqi, E. Yorke, et al. Toxicity and local control in “ultra-central” lung tumors treated with SBRT or high-dose hypofractionated RT. J Thorac Oncol 2018; 13(10).

      Tekatli H, Haasbeek N, Dahele M, et al. Outcomes of Hypofractionated High-Dose Radiotherapy in Poor-Risk Patients with "Ultracentral" Non-Small Cell Lung Cancer. J Thorac Oncol 2016;11(7):1081-1089.

      Ronden MI, Palma D, Slotman BJ, Senan S. Brief Report on Radiological Changes following Stereotactic Ablative Radiotherapy (SABR) for Early-Stage Lung Tumors: A Pictorial Essay. J Thorac Oncol 2018;13(6):855-862.

      Febbo JA, Gaddikeri RS, Shah PN. Stereotactic Body Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer: A Primer for Radiologists. Radiographics 2018;38(5):1312-1336.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P1.04 - Immuno-oncology (ID 164)

    • Event: WCLC 2019
    • Type: Poster Viewing in the Exhibit Hall
    • Track: Immuno-oncology
    • Presentations: 1
    • Now Available
    • Moderators:
    • Coordinates: 9/08/2019, 09:45 - 18:00, Exhibit Hall
    • +

      P1.04-31 - Immunosenescence Correlates with Poor Outcome from PD-(L)1 Blockade but Not Chemotherapy in Non-Small Cell Lung Cancer (NSCLC) (Now Available) (ID 2268)

      09:45 - 18:00  |  Author(s): CAROLINE Caramella

      • Abstract
      • Slides

      Background

      CD28, CD57 and KLRG1 on circulating T-lymphocytes have been identified as markers of immunosenescence. The characterization of a senescent immune phenotype (SIP) in advanced NSCLC (aNSCLC) and its impact on anti-PD(L)-1 (IO) or platinum-based chemotherapy (PCT) treatments are unknown.

      Method

      The percentage of circulating CD8+CD28-CD57+KLRG1+ T-lymphocytes (SIP) was assessed by flow cytometry on fresh blood from aNSCLC patients treated with IO or PCT. A SIP cut-off was identified by log-rank maximation method. Correlations with categorical or continuous variables were performed by logistic regression or t-test. Survival curves were estimated with Kaplan Meier and compared with log-rank.

      Result

      In the IO cohort, 43 patients were evaluated for SIP: 32% ≥ 65 years, 92% non-squamous, 51% with tumoral PD-L1 expression ≥1%, 93% chemotherapy pretreated. Disease control rate (DCR), median PFS and OS and FU were 57%, 4.6 (95% CI 0.5; 8.8) months, 13 (95% CI 2.8-23.2) months, and 14 (95% CI 8.8-19.8) months, respectively.

      SIP median value was 15.4% (min 1.6%, max 57.7%). 32% of patients had >21.72% CD28-CD57+KLRG1+CD8+ lymphocytes (SIP+). SIP was not significantly associated with clinical characteristics. SIP changed according to IO response by T-sne algorithm (Figure 1A). Compared to SIP-, SIP+ patients had significantly lower DCR (81% vs 28%, p=0.002), PFS [7.3 (95% CI 4.1; 10.4) vs 1.7 (95% CI 1.2; 2.3), p=0.02] and OS [NR (95% CI 6.04; NR) vs 2.4 (95% CI 1.7; 3.1), p=0.01].

      SIP was significantly associated with specific immune populations [higher peripheral activated (Ox40+ICOS+PD1+) T-regulatory (CD25highCD127low) cells, TEMRA (CCR7-CD45RA+) CD8+ and T-helper 1 (CXCR5-CXCR3+CCR4-CCR6-CCR10-) CD4+] (Figure 1B). The PCT cohort included 61 patients, 43% SIP+. No significant difference in DCR, PFS or OS were observed according to SIP.

      figure 1a-1b.jpg

      Conclusion

      Immunosenescence is observed in 32% of aNSCLC patients before IO and correlates with specific immune phenotypes. Immunosenescence predicts lower DCR, PFS and OS from IO but not from PCT.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.