Virtual Library

Start Your Search

Katja Schulze



Author of

  • +

    MA03 - Clinomics and Genomics (ID 119)

    • Event: WCLC 2019
    • Type: Mini Oral Session
    • Track: Advanced NSCLC
    • Presentations: 1
    • Now Available
    • +

      MA03.05 - BRAF Mutations Are Associated with Increased Benefit from PD1/PDL1 Blockade Compared with Other Oncogenic Drivers in Non-Small Cell Lung Cancer (Now Available) (ID 1472)

      10:30 - 12:00  |  Author(s): Katja Schulze

      • Abstract
      • Presentation
      • Slides

      Background

      PD-1/PD-L1 immune checkpoint blockade (ICB) has revolutionized the treatment of non-small cell lung cancer (NSCLC), but only a minority of patients achieve durable clinical benefit. Although classic EGFR/ALK alterations are correlated with ICB resistance, it is unknown if patients with other molecular subtypes of NSCLC also derive poorer outcomes from ICB. We investigated if there are oncogene-driven NSCLC associated with higher response rates (RR) and progression-free survival (PFS) to ICB.

      Method

      Two independent retrospective cohorts of oncogene-driven NSCLC treated with ICB monotherapy were analyzed for clinical outcome: MD Anderson (MDACC) and Flatiron Health-Foundation Medicine Clinico-Genomic Database (FH-CGDB). PD-L1 expression (Dako 22C3 - FoundationCore) and tumor mutational burden (TMB - FoundationCore; TCGA and MSK-IMPACT – cbioportal.org) were compared across distinct molecular subtypes of NSCLC to determine differences in clinical outcome.

      Result

      Among five oncogene defined groups from the MDACC cohort, BRAF-mutant NSCLC had the highest response rate (RR) (RECIST 1.1) (P<0.01) and PFS (P<0.01) when treated with ICB (Table). These differences remained significant after adjusting for PD-L1 expression. Classic EGFR and HER-2 mutant NSCLC had the lowest RR and PFS (Table). Similar results were observed in the independent FH-CGDB cohort where BRAF-mutant NSCLC had longer real-world (rw) PFS and OS to ICB monotherapy (Table). PD-L1 expression (tumor score ≥1% and ≥50%) and TMB were higher in BRAF-mutant NSCLC compared to EGFR and HER-2 (P<0.01). BRAF V600E NSCLC had lower TMB compared to non-V600E (5.9 vs 13.7 mut/Mb, P<0.01), but both had high PD-L1 expression (≥1%: 72% vs 61%; ≥50%: 42% vs 32%).

      KRAS

      BRAF

      Classic EGFR

      EGFR exon 20

      HER2

      MDACC cohort

      Patients – N

      87

      10 (V600E 3 / non-V600E 7)

      28

      25

      15

      RR – %

      24.3

      62.5

      4.5b

      10b

      8.3

      Median PFS – mo (95% CI)

      2.76

      (2.23-3.30)

      7.37 (not estimable)a

      1.78 (1.18-2.37)

      2.73 (1.71-3.75)

      1.88 (1.63-2.12)

      FH-CGDB

      Patients – N

      503

      68 (V600E 32 / non-V600E 36)

      52

      42

      25

      Median rwPFS -

      mo (95% CI)

      3.55

      (3.15-4.24)

      6.0

      (2.89-11.6)

      2.17b

      (1.77-2.63)

      2.66b

      (2.23-5.13)

      1.87b (1.31-4.34)

      Median rwOS – mo (95% CI)

      10.28

      (8.51-12.02)

      16.07

      (8.64-NA)

      5.29b

      (3.25-17.68)

      9.89b

      (3.68-20.86)

      10.81

      (4.17-NA)

      FoundationCore cohort – N

      NA

      188 (V600E 74 / non-V600E 114)

      386

      96

      57

      TMB – mean (mut/Mb)

      NA

      10.6a

      3.7

      3.8

      5.8

      PD-L1 TPS ≥ 50% (%)

      NA

      36a

      19

      23

      16

      a: P<0.01 vs all groups; b: P<0.05 for pairwise comparison vs BRAF.

      Conclusion

      NSCLCs with BRAF mutations are associated with increased benefit from ICB when compared to tumors harboring other targetable oncogenic drivers. Oncogene driver mutations are associated with distinct patterns of TMB and PD-L1 expression. These findings highlight the importance of developing mutation-specific clinical trials in NSCLC.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P2.04 - Immuno-oncology (ID 167)

    • Event: WCLC 2019
    • Type: Poster Viewing in the Exhibit Hall
    • Track: Immuno-oncology
    • Presentations: 1
    • Moderators:
    • Coordinates: 9/09/2019, 10:15 - 18:15, Exhibit Hall
    • +

      P2.04-88 - Surgical Outcomes of a Multicenter Phase II Trial of Neoadjuvant Atezolizumab in Resectable Stages IB-IIIB NSCLC: Update on LCMC3 Clinical Trial (ID 1817)

      10:15 - 18:15  |  Author(s): Katja Schulze

      • Abstract
      • Slides

      Background

      The role of immune checkpoint inhibitors in resectable NSCLC remains undefined. We report the updated safety results of the first multicenter trial assessing neoadjuvant atezolizumab (a PD-L1 inhibitor) for resectable NSCLC.

      Method

      Eligible patients with clinical stage IB-IIIB resectable NSCLC received 2 cycles of neoadjuvant atezolizumab (1200 mg, days 1, 22) followed by surgical resection (day 40±10). Pre- and post-treatment PET/CT, pulmonary function tests (PFT), and bio-specimens were obtained. Adverse events (AE) were recorded according to CTCAEv.4.0. Preoperative treatment-related TRAE (preop-TRAE) and postoperative TRAE (postop-TRAE) defined as AE onset on, or after date of surgery, were analyzed.

      Result

      Follow-up data to post-surgery visit were analyzed for 101 patients out of planned 180: mean age: 64.6 years; male: 47/101(46.5%); current smokers: 23/101(22.8%); non-squamous histology: 66/101(65.3%); and clinical stages IB(10.9%), IIA(15.8%), IIB(27.7%), IIIA(38.6%), and IIIB(6.9%). Two cycles of atezolizumab were not completed in 5/101(5.0%) patients due to grade 1 or 2 AEs. Surgery was not performed in 11/101(10.9%) patients: 5 demonstrated disease progression, and 6 for ‘other’ reasons. 6/101(5.9%) patients were deemed unresectable. Surgery was delayed (outside of 10-day window) in 10/90(11.1%) patients by an average of 11(1-39) days. Two of these delays were due to TRAEs (hypothyroidism and pneumonitis), 3 were patient-elected delays, 2 were surgeon-related, and 3 for ‘other’ reasons. Intraoperative vascular complications occurred in 2/90(2.2%) and extensive hilar fibrosis was noted in 20/90(22.2%) patients. Overall, there was insignificant mean change in the PFTs pre- vs. post-atezolizumab therapy. Only 3/101(3.0%) patients had treatment-related dyspnea, dyspnea on exertion, or pneumonitis.

      Table 1

      Treatment Related Adverse Events

      (TRAE)

      Preoperative TRAE

      (N = 101)

      Postoperative TRAE

      (N = 90)

      All AEs

      Any grade

      55 (54.5%)

      20 (22.2%)

      Grade 1

      29 (28.7%)

      7 (7.8%)

      Grade 2

      24 (23.8%)

      9 (10.0%)

      Grade 3

      2 (2.0%)

      4 (4.4%)

      Grade 4

      0

      0

      Grade 5

      0

      0

      Specific AEs

      Dyspnea

      1 (1.0%; grade 2)

      3 (3.3%; grade 1)

      Dyspnea on exertion

      1 (1.0%; grade 1)

      0

      Myalgia

      4 (4.0%; grade 1 or 2)

      0

      Hyperthyroidism

      3 (3.0%; grade 1 or 2)

      1 (1.1%; grade 1)

      Hypothyroidism

      0

      1 (1.1%; grade 2)

      Pneumonitis

      1 (1.0%; grade 3)

      3 (3.3%; grade 2 or 3)

      Transaminitis (AST or ALT)

      8 (7.9%; grade 1 or 2)

      3 (3.3%; grade 1 or 2)

      Post-atezolizumab Change in Pulmonary Function Tests

      PFT factor

      Mean change (95% Confidence Interval)

      FEV1 (N = 72)

      -0.6% (-2.6% to 1.3%)

      FVC (N = 72)

      0.0% (-1.8% to 1.8%)

      DCLO (N = 64)

      -1.2% (-4.1% to 1.7%)

      Conclusion

      Treatment with neoadjuvant atezolizumab in resectable stage IB-IIIB NSCLC was well tolerated, with minimal delay to surgery, and few treatment associated AEs. This trial continues to accrue and assess MPR, survival, and other long-term endpoints.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.