Virtual Library

Start Your Search

David Planchard



Author of

  • +

    ES14 - What First Line in Oncogene Addicted NSCLC (ID 17)

    • Event: WCLC 2019
    • Type: Educational Session
    • Track: Targeted Therapy
    • Presentations: 1
    • Now Available
    • +

      ES14.04 - First Line for Rare Mutations (RET, BRAF, HER2) (Now Available) (ID 3233)

      15:15 - 16:45  |  Presenting Author(s): David Planchard

      • Abstract
      • Presentation
      • Slides

      Abstract

      Systemic therapy for non-small cell lung cancer (NSCLC) has undergone a dramatic paradigm shift over the past decade. In the recent years a number of other oncogenic drivers beyond EGFR, ALK, and ROS1 inhibition have emerged as novel molecular targets with potential therapeutic implications, including mutations in the genes BRAF, HER2, as well as RET rearrangements. A great number of clinical trials are currently underway, evaluating agents specifically designed to target these alterations. Here, we discuss both established and emerging targeted therapy approaches, as well as ongoing challenges for the treatment of NSCLC patients harboring these oncogenic alterations.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MA05 - Update on Clinical Trials and Treatments (ID 123)

    • Event: WCLC 2019
    • Type: Mini Oral Session
    • Track: Mesothelioma
    • Presentations: 1
    • Now Available
    • +

      MA05.11 - Safety and Efficacy of Nintedanib in Combination with Pembrolizumab in Patients with Refractory/Relapsing Malignant Pleural Mesothelioma (Now Available) (ID 2170)

      13:30 - 15:00  |  Author(s): David Planchard

      • Abstract
      • Presentation
      • Slides

      Background

      Malignant pleural mesothelioma (MPM) is an aggressive disease with no standard of care after progression to first line pemetrexed and platinum-based chemotherapy. Combinations between anti-angiogenic agents and immunotherapy are being developed as angiogenesis and immunosuppression influence each other leading to a more powerful anti-tumor response. Both Nintedanib and Pembrolizumab have been investigated as single agents or in different treatment combinations in MPM patients with interesting activity.

      Method

      The PEMBIB trial is a multi-centric open-label non-randomized basket phase 1 trial evaluating the combination of nintedanib with pembrolizumab in multiple tumor types. The safety and activity of the dose escalation part of the study were reported at AACR & ASCO meetings in 2018 with an established DLT defined as grade 3 alanine and/or aspartate aminotransferase elevation (ALT/AST). The recommended phase 2 dose is set at 150 mg BID of nintedanib with 200 mg flat dose of pembrolizumab. We would like to report the safety and activity of one of the expansion cohorts of patients with relapsing/refractory MPM which has now been completed. Eligible MPM patients were 18 years or older with an ECOG performance status of 0 or 1, histologically proven MPM that relapsed after at least one line of pemetrexed and platinum-based combination, specific anti-angiogenic eligibility criteria such as no radiographic evidence of cavitary/necrotic or tumors with local invasion of major blood vessels.

      Updated results on the safety profile and efficacy of this anti-angiogenic and anti-PD-1 combination therapy including overall response rate as per RECIST, irRC and mRECIST criteria, disease control rate will be presented at the meeting.

      Result

      The first patient from the MPM cohort was enrolled in July 2017 and the last one in April 2019. Thirty-one eligible MPM patients have been evaluable at the data cut off onJuly 2019, one of them had been enrolled since the dose-escalation part at dose level of 200mg. The age at inclusion was 68 (ranging from 38 to 85), 68% of the patients having an ECOG of 1 and 58% of the histological type was epithelioid. The most frequent adverse events (grades 1, 2 and 3) related to any of the combination drugs were liver enzymes increase, fatigue, decreased appetite, nausea, diarrhea and hypothyroidism. There were two cases of myocarditis, one of grade 3 (pembrolizumab related) and one of grade 5(pembrolizumab and nintedanib related). At the time of the data analysis the efficacy data shows six partial responses (overall response rate of 21%) and seventeen stable disease (disease control rate at 61%.).

      Conclusion

      The combination of Nintedanib with Pembrolizumab shows promising activity in relapsed MPM patients .The toxicity profile appear consistent with previous reports of anti-angiogenic agents and immunotherapy combination.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MA07 - Clinical Questions and Potential Blood Markers for Immunotherapy (ID 125)

    • Event: WCLC 2019
    • Type: Mini Oral Session
    • Track: Immuno-oncology
    • Presentations: 2
    • Now Available
    • +

      MA07.01 - Circulating Immature Neutrophils, Tumor-Associated Neutrophils and dNLR for Identification of Fast Progressors to Immunotherapy in NSCLC (Now Available) (ID 1618)

      13:30 - 15:00  |  Author(s): David Planchard

      • Abstract
      • Presentation
      • Slides

      Background

      Neutrophils are active regulators of the antitumor immune response, with pro- and antitumor- properties, but generally are associated with progression (PD) and poor outcomes. We reported that pretreatment dNLR ((neutrophils/[leucocytes-neutrophils]; high>3) correlated with immune checkpoint inhibitor (ICI) outcomes in advanced (a) NSCLC pts. Although neutrophil population is heterogeneous, the immature neutrophils (i.e. CD15+CD244-CD16low, among others) seem to be a key subpopulation linked to PD. Tumor-associated neutrophils (TAN) can be also modulator on the microenvironment. We aimed to assess the role of pretreatment circulating immature-neutrophils and tissue-TAN, combined with dNLR, on ICI outcomes in aNSCLC pts.

      Method

      aNSCLC pts treated with ICI at our institution between 11/2012 and 08/2018 were eligible. Pretreatment immunophenotyping of monocytes, monocytic MDSC (mMDSC) and granulocytes (CD15, CD11b, CD33, CD244, CD16, CD14, CD32, CD64, HLA-DR) was prospectively performed by flow cytometry in fresh whole blood in 58 pts; we defined immature-neutrophils as CD15+CD244-CD16low. TAN in the stroma were assessed using H&E staining from archival specimen, available from 80 pts. dNLR was retrospectively collected; available from 343 pts. Correlation between baseline circulating neutrophils phenotype, TAN and dNLR was evaluated as well as their impact on outcomes: progression-free survival (PFS), overall (OS), including death before 12 weeks (12wk-death) (fast-PD)

      Result

      366 pts included; 320 (90%) smokers, median age 63; 280 (77%) nonsquamous, 117 (64%) ≥1%PDL1 and 183 missing. Median PFS (mPFS) was 1.93 months (m) [95%CI, 1.8-2.3] and mOS 8.8m [6.5-11.6]. Overall, 12wk-death rate was 31% [25.9-35.6].

      Pretreatment high-dNLR (143/343; 42%) was correlated with poor PFS (P=0.002), OS P=0.0003) and a 12wk-death rate of 43% [34.5-50.9]. Pretreatment high immature-neutrophils (30/58; 53%), defined by logrank maximization method (>0.22%), were also associated with poor PFS (P=0.04), OS (P=0.0007) and a 12wk-death rate of 48.7% [26.7-64.1]. TAN (9/80; 11%) were not correlated with outcomes. There was not a correlation between immature-neutrophils, tissue-TAN and dNLR.

      When evaluating pretreatment immature-neutrophils and dNLR together, we identified a fast-PD phenotype (high immature-neutrophils/high-dNLR, 10/58; 17%), with a mOS of 1.3m [0.73- not reached (NR)] and 12wk-death rate of 60% [14.5-81.3] compared to a responder-phenotype (low immature-neutrophils/low-dNLR, 12/58; 21%), associated with good outcomes: mOS NR [18.23-NR] (P=0.002).

      Conclusion

      Pretreatment high circulating immature-neutrophils (CD15+CD244-CD16low) correlate with early failure to ICI and fast-PD phenotype. The combination of circulating immature-neutrophils and dNLR could improve the identification of this population. The impact of immature-neutrophils on ICI should be more deeply explored.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA07.02 - Early Change of dNLR Is Correlated with Outcomes in Advanced NSCLC Patients Treated with Immunotherapy (Now Available) (ID 2676)

      13:30 - 15:00  |  Author(s): David Planchard

      • Abstract
      • Presentation
      • Slides

      Background

      The [neutrophils/[leucocytes-neutrophils] ratio (dNLR) correlates with immune checkpoint inhibitors (ICI) outcomes in advanced non-small cell lung cancer (aNSCLC) patients. Significance of early dNLR change after the first course of ICI is unknown.

      Method

      Patients with NSCLC treated with ICI (PD(L)1+/-CTLA4) between Nov. 2012 and Jun. 2018 at 16 EU/US centers were included. A control group treated with chemotherapy (CT) only was also evaluated (NCT02105168). dNLR was collected at baseline (B) and at cycle 2 (C2). Patients were categorized as low vs high dNLR at each timepoint (defined as < vs > 3, as previously done), and the change between B and C2 (good = low at both timepoints, poor = high at both timepoints, mixed = different at each timepoint).

      Result

      1485 patients treated with ICI were analyzed. PDL1 was negative in 162 (11%), 1-49% in 178 (12%), ≥50% in 201 (14%), and missing in 944 (64%). dNLR at B and C2 did not associate with PD-L1 status.

      At baseline, dNLR was high in 509 (34%) patients and associated with worse PFS compared to those patients with low dNLR at baseline (HR 1.56, P<0.0001) and OS (HR 2.02, P<0.0001). At C2, dNLR was high in 484 (34%) and similarly associated with worse outcomes compared to patients with low dNLR at C2 (PFS HR 1.64, P<0.0001; OS HR 2.13, P<0.0001).

      Between B and C2, dNLR remained low in 804 (56%, « good ») or high in 327 (23%, « poor ») or changed in 310 pts (22%, « intermediate »). Those with a good dNLR demonstrated mPFS 5.3, mOS 18.6 mo), followed by those intermediate with mixed dNLR (mPFS 3, mOS 9.2 mo), and finally poor dNLR (mPFS 2, mOS 5mo). Outcomes were independant of PD-L1 expression (adjusted HR for PFS 1.94 for intermediate and 3.16 for poor groups, compared to good dNLR group, P<.001; adjusted HR for OS was 2.08 for intermediate and 3.67 for poor groups, P<0.001).A bootstrap tested the stability of OS/PFS prediction (P<0.001).

      In the chemo-cohort (n=173), high C1-dNLR (n=81, 47%) was not associated with OS (P=0.84).

      Conclusion

      dNLR at baseline, at cycle 2, and the change between these two timepoints associated with outcomes in patients treated with immunotherapy independent of PD-L1, but not in patients treated with chemotherapy alone. dNLR is specifically prognostic in the context of immunotherapy.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MA11 - Immunotherapy in Special Populations and Predictive Markers (ID 135)

    • Event: WCLC 2019
    • Type: Mini Oral Session
    • Track: Immuno-oncology
    • Presentations: 1
    • Now Available
    • +

      MA11.11 - STK11/LKB1 Genomic Alterations Are Associated with Inferior Clinical Outcomes with Chemo-Immunotherapy in Non-Squamous NSCLC (Now Available) (ID 2898)

      14:00 - 15:30  |  Author(s): David Planchard

      • Abstract
      • Presentation
      • Slides

      Background

      Addition of pembrolizumab (P) to platinum-doublet chemotherapy [carboplatin (or cisplatin) and pemetrexed (CP)] prolongs overall survival and is a standard of care (SOC) for the 1st line treatment of metastatic EGFR/ALK wild-type (wt) non-squamous non-small cell lung cancer (mnsNSCLC). Despite widespread use of the CPP regimen, molecular determinants of clinical benefit from the addition of P to CP remain poorly defined. We previously identified genomic alterations in STK11/LKB1 as a major driver of primary resistance to PD-1/PD-L1 blockade in mnsNSCLC. Here, we present updated data on the impact of STK11/LKB1 alterations on clinical outcomes with CPP chemo-immunotherapy from a large retrospective multi-institution international study.

      Method

      620 pts with mnsNSCLC and tumor genomic profiling encompassing STK11/LKB1 from 21 academic institutions in the US and Europe were included in this study. Clinical outcomes were collected for two distinct patient cohorts: a) 468 pts treated with first-line CPP (or >1st line following FDA-approved TKIs) that were alive for 14 days thereafter and b) 152 STK11/LKB1-mt pts that received CP prior to regulatory approval of CPP.

      Result

      Among 468 CPP-treated pts, STK11/LKB1 genomic alterations (N=118) were associated with significantly shorter PFS (mPFS 5.0m vs 6.8m, HR 1.45, 95% CI 1.11 to 1.91; P=0.007) and shorter OS (mOS 10.6m vs 16.7m, HR 1.46, 95% CI 1.04 to 2.07; P=0.031) compared with STK11/LKB1-wt tumors (N=350). The likelihood of disease progression as BOR to CPP differed significantly between the two groups (29.5% vs 17%, P= 0.006). Similar results were obtained when limiting the analysis to EGFR and ALK-wt tumors (N=435) (mPFS 5.0m vs 6.9m, HR 1.48, 95% CI 1.12-1.95, P=0.006 and mOS 10.6m vs 16.7m, HR 1.45, 95% CI 1.02-2.05, P=0.036). Importantly, in pts with STK11/LKB1-mt mnsNSCLC, addition of pembrolizumab to CP did not result in significant improvement of PFS (mPFS 5.0m vs 3.9m, HR 0.82, 95% CI 0.63 to 1.07, P=0.14) or OS (mOS 10.6m vs 9.1m, HR 0.93, 95% CI 0.67 to 1.30, P=0.69) compared to CP alone.

      Conclusion

      In mnsNSCLC, STK11/LKB1 alterations define a subgroup of pts with inferior clinical outcomes with CPP and lack of benefit from the addition of pembrolizumab to CP chemotherapy. Novel therapeutic strategies are required to establish effective antitumor immunity in STK11/LKB1-mutant NSCLC.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MA21 - Non EGFR/MET Targeted Therapies (ID 153)

    • Event: WCLC 2019
    • Type: Mini Oral Session
    • Track: Targeted Therapy
    • Presentations: 2
    • Now Available
    • +

      MA21.07 - Circulating Tumor DNA Analysis Depicts Potential Mechanisms of Resistance to BRAF-Targeted Therapies in BRAF+ Non-Small Cell Lung Cancer (Now Available) (ID 1365)

      14:30 - 16:00  |  Author(s): David Planchard

      • Abstract
      • Presentation
      • Slides

      Background

      Oncogenic BRAF-V600 mutations are observed in 1-2% of non-small cell lung cancer (NSCLC). Targeted therapies including vemurafenib (V), dabrafenib (D) or combination of dabrafenib plus trametinib (D+T) are associated with favorable outcomes in these patients (pts). The mechanisms of resistance to BRAF-targeted therapies (BRAF-TT) in NSCLC are largely unknown.

      Method

      We performed genomic profiling of serial circulating-tumor DNA (ctDNA) in a cohort of 79 metastatic BRAF-mutant NSCLC pts (96% V600E, 4% non-V600). BRAFmutational status was ascertained based on local testing. Plasma samples were collected, from 2014-2018 in 27 Hospitals, from pts treated with V (n=34), D (n=2) or D+T (n=23). We collected 41 plasma samples at baseline to BRAF-TT, 40 at progressive disease (PD) and ~200 samples during treatment follow-up, concomitant to routine radiological evaluation. Inivata InVisionSeq™ assay was used to detect the presence of SNVs, indels and CNAs in 36-cancer related genes.

      Result

      At baseline, 72,5% of BRAF mutations (V600E and non-V600E) were detected in plasma. BRAF-V600E detection in plasma was associated with the presence of liver metastasis, versus BRAF-V600E-negative cases (22% vs. 7%, respectively). Co-occurring molecular alterations at baseline, besides BRAF-V600E, were observed in 18/26 (70%) cases: FGFR2 (1pt), PIK3CA (2pts), ERBB2 (1pt), CTNNB1 (2pts) and IDH1 (2pts). FGFR2, PIK3CA or CTNNB1 alterations were associated with PD as the best response to the subsequent BRAF-TT. TP53 and STK11 mutations were observed in 54% (14/26) and 8% (2/26) of pts, respectively. Complete clearance of BRAF-V600E in plasma at baseline was observed at the first CT-scan evaluation in 42% (3/7) and 82% (9/11) pts treated with V or D+T, respectively. These pts were in complete or partial response, suggesting that monitoring BRAF-V600E levels in plasma on treatment may be a clinically useful marker of tumor response. At PD, a consistent rebound in BRAF-V600E plasma levels was observed in 60% (24/40) pts. Resistance to V was associated with alterations in the MAPK pathway: 1pt (KRAS), 1pt (GNA11), 1pt (NRAS and GNAS) and 1pt (MAP2K1 and NFE2L2). Activating PI3KCA mutations were observed in 4 pts who progressed in <6 months on V treatment. ctDNA analyses at PD under D+T revealed that, similar to what we observed in patients who progressed on V, alterations in KRAS, NRAS, PIK3CA and CTNNB1 are associated with D+T resistance. Prediction of the impact of these alterations, at the protein level, was assessed using in silico structure modeling and will be presented.

      Conclusion

      ctDNA monitoring might be an informative tool for assessing disease response and resistance in NSCLC pts treated with BRAF-TT. MAPK reactivation remains an important resistance mechanism to BRAFi-monotherapy or to BRAFi and MEKi combination therapy.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA21.09 - Tyrosine Kinase Inhibitors' Plasma Concentration and Oncogene-Addicted Advanced Non-Small Lung Cancer (aNSCLC) Resistance (Now Available) (ID 830)

      14:30 - 16:00  |  Author(s): David Planchard

      • Abstract
      • Presentation
      • Slides

      Background

      The development of TKIs against driver molecular alteration has changed treatment paradigm in aNSCLC patients (pts). All tumors eventually progress and a resistance mechanism is identified in only a fraction of pts. Plasma concentration of TKI can decrease after chronic exposition but limited data are available. Our hypothesis is that an insufficient plasma exposure could contribute to tumor progression (PD).

      Method

      We assessed the plasma concentration of TKI in pts with aNSCLC harboring ALK rearrangement, EGFR or BRAF V600E mutation. We defined chronic exposure as a treatment administered > 3 months. Patients’ characteristics and co-medications were collected. Residual plasma concentrations were measured using Ultra Performance Liquid Chromatography coupled with tandem mass spectrometry validated methods. We compared results to currently recommended therapeutic targets and correlated exposure levels to treatment benefit.

      Result

      Between Apr. 2014 and Feb. 2019, 51 samples were prospectively collected (gefitinib n=11, osimertinib n=10, erlotinib n=13, crizotinib n=7, dabrafenib + trametinib n=5) in 41 pts. Median time of exposure was 20.3 months (range 2.18 - 67.813). Low plasma concentration was observed in 31 (61%) samples. Out of 14 samples collected in pts with ongoing benefit, 10 (71%) had low plasma exposure. Smoking status was associated with low plasma TKI concentration (P=0.01) whatever the TKI used. A total of 37 samples were collected at PD, 21 (57%) had low plasma exposure. The median time to treatment failure (TTF) in the ‘low exposure group' (n=31) was 14.9 months (95% CI 12.48 – 33.2) vs. 24.6 months (95% CI 8.65 -not reached (NR) in the ‘normal exposure group’ (P=0.55). No significant impact of protons pump inhibitors on TTF was found (p=0.12), including with gefitinib and erlotinib (p=0.76; n=24). In case of isolated brain PD (n=4), 3 pts (75%) had low plasma exposure. TKI dose was reduced in 14 pts because of toxicity, median TTF was 17.0 months (95% CI 10.4-NR) vs. 20.1 months (95% CI 10.4-59.8, P=0.45 in pts treated with standard dose. In the EGFR mutated aNSCLC population at PD (n=19), T790M resistance mutation was more frequent in the ‘normal exposure group’ (37.5%, n= 3/8,) than in the ‘low exposure group’ (9.1%, n=1/11), OR=0.13 95%CI (0.01-1.29), p=0.08.

      Conclusion

      TKI is underdose in the majority of aNSCLC patients at PD. Low TKI concentration were more frequent in pts without tumor resitance mechanism. Altogether, it suggests that low TKI exposure might contribute to PD.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MA25 - Precision Medicine in Advanced NSCLC (ID 352)

    • Event: WCLC 2019
    • Type: Mini Oral Session
    • Track: Advanced NSCLC
    • Presentations: 1
    • Now Available
    • +

      MA25.03 - Tumor-Infiltrating Lymphocytes (TIL) and Outcomes with Immunotherapy (ICI) or Chemotherapy in Advanced NSCLC (aNSCLC) Patients (Now Available) (ID 1374)

      14:30 - 16:00  |  Author(s): David Planchard

      • Abstract
      • Presentation
      • Slides

      Background

      Tumor infiltrating lymphocytes (TIL) morphologically assessed is prognostic in early stages in several tumors. We previously reported the correlation of TIL with immune checkpoint inhibitors (ICI) outcomes in 98 advanced (a) NSCLC patients treated with ICI. We aimed to assess the role of TIL in a larger cohort treated with ICI, and in patients exclusively treated with chemotherapy (CT).

      Method

      aNSCLC patients with treated with single-agent ICI, with H&E stained sample available, were included between 11/2012 and 02/2017 in 3 cancer centers (immuno-cohort). Patient’s characteristics, biological data were retrospectively collected. The CT-cohort was extracted from the prospective MSN study (NCT02105168), between 06/2009 and 10/2016, enrolling aNSCLC patients treated with platinum-based CT, and tissue available. TIL in the stroma was evaluated in archival samples. High-TIL was defined as ≥10% density. Multivariate Cox model was used to study its prognostic values on overall and progression-free survival (OS, PFS).

      Result

      A total of 221 patients were included in the immuno-cohort: 142 (64%) male, with median (m) age of 63, 182 (84%) smokers, 161 (77%) PS≤1, 162 (63%) adenocarcinoma; 125 (57%) received ICI as second-line. High-TIL was observed in 49/221 (28%), non-assessable in 46. High-TIL had independent impact on OS and PFS (HR 0.40; 95% CI 0.25-0.63, P<0.0001). The mPFS and OS were 3.1months (mo.) (2.5-4.9) and 11mo. (7.0-13.2) respectively. The high-TIL group had mPFS of 13mo. (5.0-NR) vs. 2.2mo. (1.7-3.0) in low-TIL group (P<0.0001). High-TIL group had mOS not reached (NR) (12.2-NR) vs. 8.4 mo. (5.0-11.6) in low-TIL (P=0.007). The CT-cohort (N=189) had high-TIL in 103/189 (54%). The mPFS and mOS were 5.7mo. (4.9-6.7) and 11.7mo. (9.3-13.0) respectively, with no association with TIL.

      OS, Immuno-cohort (n=221) OS, Chemo-cohort (n=188)

      Hazard ratio (HR)
      95% confidence interval (CI)

      P-value

      HR
      95% CI

      P-value

      TIL
      ≥10% (high)

      0.46 (0.28-0.81) 0.006 1.03 (0.76-1.41) 0.84
      Age
      ≥65 y
      0.86 (0.50-1.46) 0.57 0.99 (0.72-1.38) 0.99
      Line of treatment*
      second line
      0.69 (0.44-1.09) 0.11 0.84 (0.60-1.16) 0.29

      N# metastatic sites
      >2

      1.40 (0.88-2.20) 0.16 1.50 (1.07-2.12) 0.02
      Performance status
      ≥2
      2.75 (1.73-4.37) <0.0001 1.94 (1.23-3.04) 0.004
      Histology
      Squamous
      1.13 (0.70-1.81) 0.62 1.09 (0.65-1.83) 0.75
      *Line of treatment: lines of immunotherapy for the Immuno-cohort; lines of chemotherapy for the Chemo-cohort.

      Conclusion

      High-TIL (≥10%) is a simple and accessible marker associated with better ICI outcomes, but not with CT. This suggests a potential predictive value that must be validated in larger prospectively studies.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    OA07 - Precision Medicine Involves Biology and Patients (ID 132)

    • Event: WCLC 2019
    • Type: Oral Session
    • Track: Advanced NSCLC
    • Presentations: 1
    • Now Available
    • +

      OA07.01 - Osimertinib Plus Platinum/Pemetrexed in Newly-Diagnosed Advanced EGFRm-Positive NSCLC; The Phase 3 FLAURA2 Study (Now Available) (ID 2383)

      11:00 - 12:30  |  Author(s): David Planchard

      • Abstract
      • Presentation
      • Slides

      Background

      Osimertinib is a third-generation, CNS-active EGFR-TKI that potently and selectively inhibits both sensitizing EGFR and T790M mutations. Osimertinib is considered the standard of care for patients with newly-diagnosed advanced/metastatic NSCLC harbouring EGFR-activating mutations, based on results of the phase 3 FLAURA trial, which demonstrated a statistically and clinically significant progression-free survival (PFS) benefit for osimertinib over erlotinib or gefitinib. Evidence indicates that adding chemotherapy to gefitinib improves efficacy outcomes versus EGFR TKI monotherapy in newly-diagnosed patients with EGFRm NSCLC (Nakamura et al JCO 2018;36:9005). Adding platinum/pemetrexed to osimertinib could further improve outcomes for newly-diagnosed patients with EGFRm-positive NSCLC.

      Method

      The phase 3, open-label, FLAURA2 study aims to assess the efficacy and safety of osimertinib plus cisplatin/carboplatin plus pemetrexed in adults with locally-advanced/metastatic EGFRm-positive (Ex19del and/or L858R) NSCLC who have not received prior therapy for advanced disease. Patients are required to have a WHO performance status (PS) 0-1, life expectancy >12 weeks and not be amenable to curative surgery or radiotherapy. An initial non-randomised run-in phase (n=30) will assess the safety and tolerability of osimertinib 80 mg once daily (QD) with either cisplatin or carboplatin, and pemetrexed, both administered every 3 weeks (Q3W) for 4 cycles, followed by osimertinib 80 mg QD plus pemetrexed maintenance Q3W until progression or discontinuation. Based on evaluation of safety data from the run-in after ≥12 patients from each group have received ≥3 cycles of study treatment or discontinued therapy, the second phase will randomise approximately 556 patients 1:1 to receive osimertinib 80 mg QD with pemetrexed and cisplatin/carboplatin for 4 cycles followed by osimertinib plus pemetrexed maintenance Q3W or osimertinib alone (80 mg QD), to be continued until progression or discontinuation. Randomisation will be stratified by race (Chinese/Asian vs. non-Chinese/Asian vs. non-Asian), WHO PS (0 vs. 1), and tissue EGFR mutation test at enrolment (cobas® EGFR Mutation Test vs local assessment). A futility analysis of the randomized phase is planned for when approximately 83 PFS events have occurred. The primary endpoint is PFS based on investigator assessment of response using RECIST 1.1 criteria (blinded central assessment is included as a sensitivity analysis). Secondary endpoints include overall survival, objective response rate, duration of response, PFS2, health-related quality of life and safety. Effects on CNS metastases in patients with lesions at baseline will be included as an exploratory endpoint. Enrolment is planned for Q3 2019 for the safety run-in and Q1 2020 for the randomized phase.

      Result

      Section not applicable

      Conclusion

      Section not applicable

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P1.01 - Advanced NSCLC (ID 158)

    • Event: WCLC 2019
    • Type: Poster Viewing in the Exhibit Hall
    • Track: Advanced NSCLC
    • Presentations: 1
    • Moderators:
    • Coordinates: 9/08/2019, 09:45 - 18:00, Exhibit Hall
    • +

      P1.01-89 - A Multicenter Phase 1/2a Trial of CLN-081 in NSCLC with EGFR Exon 20 Insertion Mutations (ID 488)

      09:45 - 18:00  |  Author(s): David Planchard

      • Abstract

      Background

      First and second-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are largely ineffective against EGFR exon 20 insertion mutations (ins20) and, while several novel agents targeting EGFR ins20 are in development (poziotinib, TAK-788), preliminary reports suggest that EGFR-related adverse events are common and may limit long-term efficacy (Heymach, WCLC 2018, Neal WCLC 2018). Targeted therapies which are safe and effective in patients with EGFR ins20 are needed. CLN-081 (also known as TAS-6417) is a novel, orally available EGFR TKI that selectively inhibits ins20 mutant EGFRs (Mol Cancer Ther 2018; 17:1648). In a cell-based assay using genetically engineered cell lines, CLN-081 potently inhibited intracellular phosphorylation of a wide spectrum of ins20 mutant EGFRs. The selectivity for mutant over wild type EGFR (WT/mut ratio) ranged from 4 to 134-fold depending on the specific mutation, representing an unprecedented level of mutant specificity.

      Method

      This is an adaptive phase 1/2a trial evaluating CLN-081 as monotherapy in advanced non-small cell lung cancer (NSCLC) harboring EGFR ins20. Dose escalation will proceed initially according to an accelerated titration (AT) design, converting to a rolling six (R6) design based upon pre-specified safety criteria. Cohort expansion in Phase 1 can occur at one or more doses where responses are observed in R6 cohorts. Transition from Phase 1 into Phase 2a is based upon a Simon-Two Stage design. The starting dose will be 60mg. Once daily and twice daily dosing will be explored. Approximately 90 patients will be enrolled. Eligible patients will have advanced, exon 20 insertion mutation positive NSCLC, and at least one prior platinum containing treatment regimen. EGFR ins20 will be identified based on local testing (tissue or plasma). Patients who have discontinued a previous EGFR TKI due to progressive disease will be allowed in AT dose escalation cohorts but will be excluded from R6, and the Phase 1 and 2a expansion cohorts. The primary objectives in Phase 1 are to demonstrate safety and determine the maximum tolerated dose. Secondary Phase 1 objectives include evaluation of PK and preliminary efficacy. The primary objectives in Phase 2a are to define the recommended phase 2 dose and evaluate the overall response rate. The secondary Phase 2a objectives include additional measures of response and confirmation of CLN-081’s safety profile.

      Result

      Section not applicable

      Conclusion

      Section not applicable

  • +

    P1.04 - Immuno-oncology (ID 164)

    • Event: WCLC 2019
    • Type: Poster Viewing in the Exhibit Hall
    • Track: Immuno-oncology
    • Presentations: 1
    • Now Available
    • Moderators:
    • Coordinates: 9/08/2019, 09:45 - 18:00, Exhibit Hall
    • +

      P1.04-31 - Immunosenescence Correlates with Poor Outcome from PD-(L)1 Blockade but Not Chemotherapy in Non-Small Cell Lung Cancer (NSCLC) (Now Available) (ID 2268)

      09:45 - 18:00  |  Author(s): David Planchard

      • Abstract
      • Slides

      Background

      CD28, CD57 and KLRG1 on circulating T-lymphocytes have been identified as markers of immunosenescence. The characterization of a senescent immune phenotype (SIP) in advanced NSCLC (aNSCLC) and its impact on anti-PD(L)-1 (IO) or platinum-based chemotherapy (PCT) treatments are unknown.

      Method

      The percentage of circulating CD8+CD28-CD57+KLRG1+ T-lymphocytes (SIP) was assessed by flow cytometry on fresh blood from aNSCLC patients treated with IO or PCT. A SIP cut-off was identified by log-rank maximation method. Correlations with categorical or continuous variables were performed by logistic regression or t-test. Survival curves were estimated with Kaplan Meier and compared with log-rank.

      Result

      In the IO cohort, 43 patients were evaluated for SIP: 32% ≥ 65 years, 92% non-squamous, 51% with tumoral PD-L1 expression ≥1%, 93% chemotherapy pretreated. Disease control rate (DCR), median PFS and OS and FU were 57%, 4.6 (95% CI 0.5; 8.8) months, 13 (95% CI 2.8-23.2) months, and 14 (95% CI 8.8-19.8) months, respectively.

      SIP median value was 15.4% (min 1.6%, max 57.7%). 32% of patients had >21.72% CD28-CD57+KLRG1+CD8+ lymphocytes (SIP+). SIP was not significantly associated with clinical characteristics. SIP changed according to IO response by T-sne algorithm (Figure 1A). Compared to SIP-, SIP+ patients had significantly lower DCR (81% vs 28%, p=0.002), PFS [7.3 (95% CI 4.1; 10.4) vs 1.7 (95% CI 1.2; 2.3), p=0.02] and OS [NR (95% CI 6.04; NR) vs 2.4 (95% CI 1.7; 3.1), p=0.01].

      SIP was significantly associated with specific immune populations [higher peripheral activated (Ox40+ICOS+PD1+) T-regulatory (CD25highCD127low) cells, TEMRA (CCR7-CD45RA+) CD8+ and T-helper 1 (CXCR5-CXCR3+CCR4-CCR6-CCR10-) CD4+] (Figure 1B). The PCT cohort included 61 patients, 43% SIP+. No significant difference in DCR, PFS or OS were observed according to SIP.

      figure 1a-1b.jpg

      Conclusion

      Immunosenescence is observed in 32% of aNSCLC patients before IO and correlates with specific immune phenotypes. Immunosenescence predicts lower DCR, PFS and OS from IO but not from PCT.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P1.10 - Prevention and Tobacco Control (ID 175)

    • Event: WCLC 2019
    • Type: Poster Viewing in the Exhibit Hall
    • Track: Prevention and Tobacco Control
    • Presentations: 1
    • Moderators:
    • Coordinates: 9/08/2019, 09:45 - 18:00, Exhibit Hall
    • +

      P1.10-06 - Pathological Characterization of Radon-Induced Lung Cancer in Rats  (ID 1616)

      09:45 - 18:00  |  Author(s): David Planchard

      • Abstract

      Background

      Radon is a radioactive gas, considered the leading cause of lung cancer in non-smokers. Although the risk of lung cancer is linear, there is no safe level and even low dose can be associated with risk. In humans, no specific pathological subtypes of lung cancer have been clearly associated with radon. In animals, the French Atomic Energy Commission (CEA) exposed to low dose of radon (25 working level month, WLM) a large cohort of rats in a radon-exposure chamber, showing lung cancer induced by low exposure (Chameaud J, Radiation Prot Dosimetry 1984). We aimed to describe pathological features of radon-induced tumors in rats from the CEA’s cohort.

      Method

      Retrospective assessment of archival samples available of the rats exposed to low-dose radon in the Laboratoire de Pathologie Pulmonaire Experimentale, COGEMA (France), between 1989 and 1992. Autopsy reports were also reviewed. The pathological assessment was performed for a thoracic oncology pathologist (JA) in H&E staining slides according to the current WHO histological classification.

      Result

      Samples from 117 rats were collected. Among 104 tumors, to date the analysis has been performed in 94. Forty tumors (43%) were classified as malignant, 28 (30%) as uncertain malignant potential (UMP) and 26 (28%) benign. In 2 rats (2%) synchronous malignant and non-malignant tumors were observed.

      Among the malignant tumors, 23 (58%) were epithelial and 17 (42%) non-epithelial. Lung carcinoma was the most common primary epithelial tumor (n=10, 43%), followed by abdominal area tumors (n=5, 22%), and thyroid (n=3, 13%). In the UMP group, 7 (25%) were epithelial and 21 (75%) non-epithelial, with no lung tumors observed. In the benign group, most of them (n=24, 92%) were epithelial, with 4 cases with lung atypical adenomatous hyperplasia-like lesions; 2 synchronous with other malignant tumors (n=1 lymphoma, n=1 cutaneous squamous cell carcinoma).

      A total of 26 tumors (27%) had thoracic involvement: 4 (15%) primary lung non-malignant lesions, 11 primary lung malignancies (42%) and 11 with metastases from other tumors (42%). As primary malignant lung tumors, we observed: 7 (64%) adenocarcinoma in situ, one papillary adenocarcinoma, one undifferentiated large cell carcinoma with bilateral metastases, one metastatic squamous carcinoma and one metastatic undifferentiated tumor, compatible with sarcoma

      Conclusion

      In this cohort of radon-induced tumors in rats, we observed different tumor types, from non-malignant lesions to aggressive malignancies, with predominance of epithelial tumors. Lung carcinoma was the most common primary tumor and adenocarcinoma the histological subtype more observed, with histological similarities with humans.

  • +

    P2.06 - Mesothelioma (ID 170)

    • Event: WCLC 2019
    • Type: Poster Viewing in the Exhibit Hall
    • Track: Mesothelioma
    • Presentations: 1
    • Moderators:
    • Coordinates: 9/09/2019, 10:15 - 18:15, Exhibit Hall
    • +

      P2.06-01 - STELLAR Trial: Radiological Response Patterns of TTFields Plus Chemotherapy in First-Line Treatment of Malignant Pleural Mesothelioma (ID 2533)

      10:15 - 18:15  |  Author(s): David Planchard

      • Abstract
      • Slides

      Background

      Tumor Treating Fields (TTFields) are an anti-mitotic, regional treatment modality, utilizing low intensity alternating electric fields delivered non-invasively to the tumor using a portable, medical device. TTFields have significantly extended survival of glioblastoma patients. In-vitro, human malignant pleural mesothelioma (MPM) cells were highly susceptible to TTFields. In the STELLAR trial [NCT02397928], patients with unresectable MPM treated with first-line chemotherapy in combination with TTFields had a significantly higher median overall survival compared to historical controls (18.2 Vs. 12.1 months). We analyzed radiological data from STELLAR patients whose tumors responded while receiving the combined therapy.

      Method

      The trial accrued 80 patients with unresectable, previously untreated mesothelioma who were treated with continuous 150 kHz TTFields (>18h/day) in combination with pemetrexed and cisplatin or carboplatin (at standard dosing). Inclusion criteria: ECOG PS of 0-1, pathologically proven mesothelioma and at least one measurable lesion according to modified RECIST criteria. Patients were followed q3w (CT scan q6w) until disease progression. Radiological assessments were done at each study site. EOCG status and cancer-related pain were assessed until disease progression using a visual analog scale.

      Result

      Partial responses (PRs) were seen in 40.3% of evaluable patients and clinical benefit (PR+SD) was seen in 97.2% of patients. The median time between treatment start and PR was 1.8 (1.4-4.4) months). All patients presenting with PR during the STELLAR study had continuous reduction in the total sum of lesion diameters, suggesting no initial/pseudo-progression. 83% of the patients who responded to the combined therapy finally had disease progression within median response duration of 5.7 (1.4-13) months, per Kaplan-Meier Estimator. One patient did not progress for more than 27 months. Median time to deterioration in performance status was 13.1 months. Average pain score was lower compared to baseline during the first 7 months of treatment and higher later with a median time to a clinical significant 33% increase in pain of 8.4 months. Compliance with TTFields was 68% (16.3 hours/day) during the first 3 months of therapy. No TTFields-related other than expected dermatitis below the arrays were reported.

      Conclusion

      The STELLAR study showed significant survival extension in previously untreated MPM patients. Response rates were similar to that of current SOC treatment, but lasted longer with the addition of TTFields. TTFields was not associated with a decrease in performance status or an increase in pain. TTFields in combination with chemotherapy are efficacious in MPM vs chemotherapy alone reported in historical data.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.