Virtual Library

Start Your Search

J. Erasmus



Author of

  • +

    MA 05 - Immuno-Oncology: Novel Biomarker Candidates (ID 658)

    • Event: WCLC 2017
    • Type: Mini Oral
    • Track: Immunology and Immunotherapy
    • Presentations: 1
    • +

      MA 05.02 - STK11/LKB1 Loss of Function Genomic Alterations Predict Primary Resistance to PD-1/PD-L1 Axis Blockade in KRAS-Mutant NSCLC (ID 10367)

      15:45 - 17:30  |  Author(s): J. Erasmus

      • Abstract
      • Presentation
      • Slides

      Background:
      The genomic landscape of primary resistance to PD-1 blockade in lung adenocarcinoma (LUAD) is largely unknown. We previously reported that co-mutations in STK11/LKB1 (KL) or TP53 (KP) define subgroups of KRAS-mutant LUAD with distinct therapeutic vulnerabilities and immune profiles. Here, we present updated data on the clinical efficacy of PD-1/PD-L1 inhibitors in co-mutation defined KRAS mutant and wild-type LUAD patients and examine the relationship between genetic alterations in individual genes, tumor cell PD-L1 expression and tumor mutational burden (TMB) using cohorts form the SU2C/ACS Lung Cancer Dream Team and Foundation Medicine (FM).

      Method:
      The cohorts included 924 LUAD with NGS (FM cohort) and 188 patients with KRAS non-squamous NSCLC (SU2C cohort) who received at least one cycle of PD-1/PD-L1 inhibitor therapy and had available molecular profiling. Tumor cell PD-L1 expression was tested using E1L3N IHC (SU2C) and the VENTANA PD-L1 (SP142) assay (FM). TMB was defined as previously described and was classified as high (TMB-H), intermediate (TMB-I) or low (TMB-L).

      Result:
      188 immunotherapy-treated (83.5% nivolumab, 11.7% pembrolizumab, 4.8% anti-PD1/PD-L1 plus anti-CTLA-4) pts with KRAS-mutant NSCLC were included in the efficacy analysis. The ORR differed significantly between the KL (8.8%), KP (35.9%) and K-only sub-groups (27.3%) (P=0.0011, Fisher’s exact test). KL LUAC exhibited significantly shorter PFS (mPFS 1.8m vs 2.7m, HR=0.53, 95% CI 0.34-0.84, P<0.001, log-rank test) and OS (mOS 6.8m vs 15.6m, HR 0.53, 95% CI 0.34 to 0.84, P=0.0072, log rank test) compared to KRAS-mutant NSCLC with wild-type STK11. Loss-of function (LOF) genetic alterations in STK11 were the only significantly enriched event in PD-L1 negative, TMB-I/H compared to PD-L1 high positive (TPS≥50%), TMB-I/H tumors in the overall FMI cohort (Bonferroni adjusted P=2.38x10[-4], Fisher’s exact test) and among KRAS-mutant tumors (adjusted P=0.05, Fisher’s exact test) . Notably, PD-1 blockade demonstrated activity among 10 PD-L1-negative KP tumors, with 3 PRs and 4SDs recorded. In syngeneic isogenic murine models PD-1 blockade significantly inhibited the growth of Kras mutant tumors with wild-type LKB1 (K), but not those with LKB1 loss (KL), providing evidence that LKB1 loss can play a causative role in promoting PD-1 inhibitor resistance.

      Conclusion:
      Loss of function genomic alterations in STK11 represent a dominant driver of de novo resistance to PD-1/PD-L1 blockade in KRAS-mutant NSCLC. In addition to tumor PD-L1 status and tumor mutational burden precision immunotherapy approaches should take into consideration the STK11 status of individual tumors.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.