Virtual Library

Start Your Search

M. Shaw



Author of

  • +

    OA 01 - The New Aspect of Radiation Therapy (ID 652)

    • Event: WCLC 2017
    • Type: Oral
    • Track: Radiotherapy
    • Presentations: 1
    • +

      OA 01.01 - A Randomized Trial of SABR vs Conventional Radiotherapy for Inoperable Stage I Non-Small Cell Lung Cancer: TROG 09.02 (CHISEL) (ID 8628)

      11:00 - 12:30  |  Author(s): M. Shaw

      • Abstract
      • Presentation
      • Slides

      Background:
      Although stereotactic ablative body radiotherapy (SABR) is now well established as a treatment for stage I non-small cell lung cancer (NSCLC), there is limited evidence that it is as or more effective than conventional fully fractionated radiotherapy (CRT). We conducted a randomized trial to determine if SABR results in longer time to local failure than CRT.

      Method:
      This was a multicentre trial of the Trans-Tasman Radiation Oncology Group (TROG) and Australasian Lung Cancer Trials Group, registration number NCT01014130. Patients were eligible if they had biopsy proven stage I (T1- T2a N0M0) NSCLC based on PET and were medically inoperable or refused surgery. Patients had to be performance status ECOG 0 or 1, and the tumor had to be at least 2 cm or more from the bifurcation of the lobar bronchus. Patients were randomized 2:1 to SABR (54 Gy in 3 fractions, or 48 Gy in 4 fractions, depending on proximity to the chest wall, to the isodose covering the PTV) or to CRT (66 Gy in 33 fractions or 50 Gy in 20 fractions). The primary objective was to compare time to local failure between arms. Assuming that the rate of local failure at 2 years would be 10% in patients randomized to SABR versus 30% in patients randomized to CRT, 100 patients were required. All living patients were followed for a minimum of 2 years. Analysis was based on the intention to treat principle. Funding: In Australia: Grant #1060822 was awarded through Cancer Australia. In New Zealand, The Cancer Society of New Zealand and the Genesis Oncology Trust.

      Result:
      Between 12/09 and 6/15, 101 patients were enrolled. There were 56 males and 45 females with a median age of 74 years (range 55-89), ECOG performance status – 28 were 0, 71 were 1 and 1 was 2. TNM stage was T1N0M0 in 71 and T2aN0M0 in 30. Sixty six patients were randomized to SABR and 35 patients to CRT. Patients randomized to SABR had superior freedom from local failure (HR = 0.29, 95% CI 0.130, 0.662, P=0.002) and longer overall survival (HR = 0.51, 95% CI 0.51, 0.911, P=0.020). Worst toxicities by arm were: CRT grade 3, 2 patients; SABR grade 4, 1 patient and grade 3, 9 patients.

      Conclusion:
      In patients with inoperable stage I NSCLC, compared with CRT, SABR resulted in superior freedom from local failure and was associated with an improvement in overall survival.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P2.14 - Radiotherapy (ID 715)

    • Event: WCLC 2017
    • Type: Poster Session with Presenters Present
    • Track: Radiotherapy
    • Presentations: 1
    • +

      P2.14-001 - Mid-Treatment Perfusion PET/CT Is More Effective Than Ventilation PET/CT in Functionally-Adapted Radiotherapy for NSCLC (ID 8508)

      09:30 - 16:00  |  Author(s): M. Shaw

      • Abstract
      • Slides

      Background:
      To assess the utility of four-dimensional (4D) ventilation/perfusion (V/Q) PET/CT lung imaging to facilitate mid-radiotherapy treatment adaption with volumetric modulated arc radiotherapy (VMAT).

      Method:
      In a prospective clinical trial, patients with non-small cell lung cancer (NSCLC) underwent [68]Ga-4D-V/Q PET/CT scanning before and during a six-week (60Gy) course of definitive chemoradiation. Functional lung volumes were delineated on both datasets as ‘highly perfused’ (HPLung) and ‘highly ventilated’ (HVLung), using a 70[th] centile SUV threshold. Three VMAT plans were created on the mid-treatment datatsets: optimised to anatomical lung, HPLung, and HVLung volumes, respectively. Functional dose volumetrics were assessed using the parameters of mean lung dose (MLD), and lung volume receiving 5, 20 or 30Gy, (V5, V20, and V30). Plan quality was assessed for consistency with respect to conformity indices, and doses to critical structures.

      Result:
      The study cohort consisted of 10 patients resulting in a total of 30 VMAT plans. PTV volumes reduced by a mean of 5.5% between scans. HVLung volume increased between scans by a median value of 39.2%. Subsequent volumetric and spatial changes were reflected in varying DICE similarity coefficients, or DSC (ranging from 0.336-0.923). HPLung decreased by a median value of 4.5% with spatial discrepancy represented by DSC of 0.568-0.805. Increase in ventilated function was most prevalent adjacent to the target, limiting the benefit of adaptive planning (Fig 1). Plan quality was consistent with the median PTV D95 ranging from 60.6-61.3Gy, and mean conformity index ranging from 1.23-1.25. Functional MLD of HPLung decreased by a mean of 7.3%, p=0.02. Plans optimised to HPLung resulted in a reduction of perfused lung V5 by a mean of 13.2%, p<0.01, with HVlung plans yielding a decrease in ventilated lung V5 of 9.6%, p=0.02. Fig 1 Figure 1



      Conclusion:
      To achieve reduced irradiation of functional lung, radiotherapy adaptation is more effectively facilitated by perfusion rather than ventilation imaging.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.