Virtual Library

Start Your Search

J.B. Sørensen

Moderator of

  • +

    PC 02 - Is Radiotherapy Necessary for Extensive SCLC? (Thoracic Radiation/PCI) (ID 582)

    • Event: WCLC 2017
    • Type: Pros & Cons
    • Track: SCLC/Neuroendocrine Tumors
    • Presentations: 4
    • +

      PC 02.01 - Thoracic Radiation - YES (ID 7827)

      11:00 - 12:30  |  Presenting Author(s): Ritsuko Komaki

      • Abstract
      • Presentation
      • Slides

      Abstract:
      Small cell lung cancer (SCLC) accounts for 15%–20% of all lung cancers, and the overwhelming majority (>95%) are associated with tobacco exposure. The incidence of all types of lung cancer, including SCLC, has been declining in the United States with the onset of tobacco smoking cessation programs, although this trend took nearly 20 years to become evident among men. Overall survival (OS) rates for patients with lung cancer have also increased by about 5% since the advent of low-dose spiral computed tomography (CT) scanning to detect early lung cancer. The prognosis for patients with SCLC continues to be poor but has improved with the advent of smoking cessation campaigns, more effective chemotherapy agents and radiation planning and delivery techniques, and the use of prophylactic cranial irradiation (PCI) for those who experience a complete response to therapy. Consolidation with chest radiotherapy has improved OS among patients with extensive-stage SCLC who achieved a complete response to chemotherapy. SCLC often presents as bulky symptomatic masses, and mediastinal involvement is common with or without pleural effusion and extrathoracic disease. Extrathoracic spread (i.e., extensive-stage disease) is also quite common, being present in 80%-85% of cases at diagnosis. Brain metastases are present in approximately 20% of patients at diagnosis; roughly half of these metastases are symptomatic and the other half are detected by imaging. Predictors of poor prognosis include poor performance status, older age, and being male. The pathologic subtypes of the disease (small cell carcinoma and combined small cell carcinoma) all carry a similarly poor prognosis. Current guidelines of the U.S. National Comprehensive Cancer Network recommend the use of positron emission tomography (PET), CT scanning, or fused PET/CT scanning of the chest, liver, adrenals, bone, and other areas of concern in the diagnosis and staging of SCLC (NCCN guideline-SCLC 2017) . Thoracic radiotherapy has also become important for improving OS among patients with SCLC who achieved a complete response to chemotherapy. In one prospectively randomized study of 498 patients with extensive-stage SCLC (WHO performance status score 0-2) who achieved complete response to chemotherapy, patients who received consolidation thoracic radiotherapy (30 Gy in 10 fractions) had significantly better 2-year OS rates than did those who did not receive thoracic radiotherapy (13% vs. 3%, P=0.004). Thoracic radiotherapy further improved thoracic-only failure rates (19.8% vs. 46% without, P=0.001) (Slotman B et al, Lancet Oncol 2015;385:36-42). However, many patients with extensive-stage SCLC do not respond to the standard etoposide/cisplatin chemotherapy (Figure 1). Those patients may need to receive molecular-targeted therapies or immunotherapy with the consolidating thoracic radiotherapy. Several histologic and immunohistochemical markers have been evaluated for diagnosing or monitoring treatment response in SCLC, including transcription thyroid factor-1 (positive in >85% of SCLC cases); cytokeratin 7; deletions in chromosome 3; Leu-7; chromogranin A; synaptophysin; myc amplification; and p53 mutations (present in ~75% of cases). Deletions in tumor-suppressor genes are also relatively common and include fragile histidine triad (FHIT) (80%); RAS effector homologue (RASSF1) (>90%); TP53 (>75%); retinoblastoma-1 (RB1) (>90%); and retinoic acid receptor-beta (72%). However, to date no biomarkers have been validated for use in diagnosing SCLC. Moreover, mutations that are often present in non-small cell lung cancer (such as epidermal growth factor receptor [EGFR] mutations and anaplastic lymphoma kinase [ALK]) are rare in SCLC. Several clinicopathologic features have been linked with worse prognosis, including poor performance status, significant weight loss, high lactate dehydrogenase levels, large numbers of metastatic sites, and the presence of paraneoplastic syndromes. Because SCLC has the among the highest rates of somatic driver mutations, and because more than 95% of patients with SCLC are former or current smokers, immunotherapy seems a reasonable approach, as high mutation burdens correlate with good response to chemoradiotherapy and sensitivity to immunomodulators (Peifer M et al., Nat Genet 2012;44(10):1104-10). At MD Anderson Cancer Center, an ongoing phase I/II study of patients with extensive-stage SCLC has been proposed to the NRG as a prospective randomized study (PI J Welsh) (Figure 2). Use of thoracic radiotherapy to consolidate a site at which SCLC is quite likely to recur is reasonable, given that recurrence considerably reduces quality of their life as well as OS. In summary, in most cases SCLC presents as extensive-stage disease, for which outcomes are very poor. Consolidation with thoracic radiotherapy for patients who achieve a complete response to chemotherapy can improve 2-year OS rates. However, less toxic and more effective systemic treatment is also required to derive the greatest benefit from consolidation thoracic radiotherapy. Figure 1(Figure 1) Figure 2(Figure 2)





      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      PC 02.02 - Thoracic Radiation - NO (ID 7828)

      11:00 - 12:30  |  Presenting Author(s): Sue S Yom

      • Abstract
      • Presentation
      • Slides

      Abstract not provided

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      PC 02.03 - PCI---YES (ID 7829)

      11:00 - 12:30  |  Presenting Author(s): Andrea Bezjak

      • Abstract
      • Presentation
      • Slides

      Abstract:
      Radiation therapy (RT) has an important role in both limited stage and extensive stage (M1) small cell lung cancer (SCLC), although more recent randomized trial results have led to increasing discussion and opposing views regarding the indications and type and degree of benefit conferred. This is one such debate, in which I am arguing in favour of recommending Prophylactic Cranial Irradiation (PCI) in extensive stage (ES) SCLC. There is no disagreement about the prevalence of brain metastases (BM) in SCLC. There is strong randomized trial evidence that delivery of modest doses of RT, such as 25 Gy in 10 fractions (fr) over 2 weeks, can reduce the incidence of BM. The simplistic explanation is that RT reduces the tumor cell burden and affects the ability of cancer cells to multiply, thus delaying or preventing the progression of microscopic intracranial metastases, and reducing the likelihood, that patient will develop symptomatic metastases – thus the term “prophylactic” brain RT. A meta-analysis [1 ]of previously conducted randomized clinical trials (RCTs) in patients with limited stage (LS) or ES SCLC with response to chemotherapy demonstrated not only a reduction in symptomatic BM (from 58% to 33% at 3 yrs) but also a survival benefit (15.3% to 20.7%). A large RCT [2] in LS SCLC confirmed that 25Gy/10 fr is the optimal dose fractionation, and described the potential negative neurocognitive and quality of life (QOL) impact of PCI [3]. Other studies [4 ]provided further data to inform patients regarding the potential risks and benefits of PCI. The EORTC group conducted a RCT in ES SCLC [5], randomizing 286 patients who had a response to 4-6 cycles of chemotherapy and had no clinical evidence of BM (but who did not have brain imaging to confirm absence of radiological metastases) to PCI vs observation. Their primary endpoint was time to symptomatic BM. A range of fractionation schedules was allowed; 62% of pts were treated with 20 Gy/5fr, 22% with 30 Gy/10-12 fr and only 4% with 25Gy/10 fr. There was a large reduction in symptomatic BM, 16.8% in the PCI group vs 41.3% in the control group (p < 0.001, hazard ratio (HR) 0.27 (95% confidence intervals (CI) 0.16-0.44). Disease-free survival (DFS) was significantly longer in the PCI group (median 14.7 weeks, vs 12 weeks, p = 0.02, HR 0.76 (95% CI 0.59-0.96), as was the overall survival (OS) (median 6.7 mo vs 5.4 mo, p = 0.003). This study let to the more widespread recommendation of PCI to patients with ES SCLC who have responded to chemotherapy. Practice guidelines on management of ES SCLC include PCI in their recommendations. A more recent Japanese RCT [6] randomized patients with ES SCLC who had a response to chemotherapy and no BM on MRI, to PCI (25 Gy/10 fr) vs observation. Follow up MRIs were mandated every 3 mo initially, then q6 mo. If patients were discovered to have radiological brain progression, whole brain RT was utilized regardless of whether they were symptomatic or not. Primary endpoint was OS. The study was closed after interim analysis, as the PCI group was not going to have a superior OS; 224 patients were enrolled in all. There was a reduction in BM in the PCI group, with the cumulative incidence at 6 mo15% vs 46% in the observation arm; at 12 months there was also a difference (33% and 59% respectively). PFS was identical, and there was no significant difference in OS (11.5 mo median OS in the PCI group vs 13.7, p = 0.094, HR 1.27 (95% CI 0.96-1.68)). The study concluded that PCI doesn’t result in longer OS and is thus “not essential for patients with ES SCLC (..) and a confirmed absence of BM, if patients will be followed by periodic MRIs”. Those are indeed very fair conclusions of their data, although it is interesting that some, perhaps many, especially in the medical oncology community, after hearing the presentation at ASCO 2015, seem to have concluded that PCI may be detrimental to survival (given the small and statistically non-significantly longer survival in the observation group). Comments have been made that in the era of staging/ restaging MRIs, there may be no benefit to PCI in ES SCLC, and that perhaps the EORTC study showed improved survival because patients may have had clinically undetected gross metastatic disease (ie not just microscopic disease). That is clearly an incorrect interpretation of the Japanese data, and an assumption that has no proof in terms of the EORTC study. Every study that looked at local control ie ability of PCI to eradicate metastatic disease showed a benefit to RT, whether assessed radiologically or clinically. The incidence of BM in the control arms of the EORTC and Japanese trials was similar, suggesting that patients staged with MRIs did not have a different risk of brain disease than patients staged clinically. Even if restaging MRIs are routinely available in many parts of the world, close surveillance with regular MRIs is not routinely done for ES SCLC; it should be noted that Japan has the highest ratio of MRI to population. A very large proportion of patients in the observation arm of the Japanese study (83%) had whole brain RT for BM – no wonder there was no survival difference as it was really a comparison of early vs late RT. Finally, the risk of systemic disease in ES SCLC is high, so that a treatment that clearly has an impact in reducing brain relapse would be expected to have a relatively small OS benefit. Thus, Japanese study provides valuable data that continue to support the role of PCI in ES SCLC, and emphasize the need for a more realistic and holistic view of the expected role and benefit of RT – ie reducing BM, prolonging survival in some, and aiming to provide good neurological functioning and QOL. Rather than trying to argue against PCI as a strategy, we should continue with attempts to reduce its toxicity, such as through hippocampal sparing techniques [7 ]and to identify groups of patients who are more or less likely to benefit in terms of survival [8], [9]. References: Auperin A, Arriagada R, Pignon JP, et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. N Engl J Med. 341(7):476-84, 1999. Le Péchoux C, Dunant A, Senan S, et al. Standard-dose versus higher-dose prophylactic cranial irradiation (PCI) in patients with limited-stage small-cell lung cancer in complete remission after chemotherapy and thoracic radiotherapy (PCI 99-01, EORTC 22003-08004, RTOG 0212, and IFCT 99-01): a randomized clinical trial. Lancet. 10(5):467-74, 2009. Le Pechoux C, Laplanche A, Faivre-Finne C, et al. Clinical neurological outcome and quality of life among patients with limited small-cell cancer treated with two different doses of prophylactic cranial irradiation in intergroup phase III trail (PC I00-01, EORTC 22003-08004, RTOG 0212 and IFCT 99-01). Annals of Oncology 22: 1154-1163, 2011. Wolfson AH, Kyounghwa B, Ritsuko K, et al. Primary Analysis of a phase II randomized trial radiation therapy oncology group (RTOG) 0212: Impact of different total doses and schedules of prophylactic cranial irradiation of chronic neurotoxicity and quality of life for patients with limited-disease small-cell lung cancer. Int. J. Radiation Oncology Biol. Phys Vol 81 (1): 77-84, 2011. Slotman B, Faivre-Finn C, Kramer G, et al. EORTC Radiation Oncology Group and Lung Cancer Group. Prophylactic cranial irradiation in extensive small-cell lung cancer. N Engl J Med. 357(7):664-72, 2007. Takahashi T, Takeharu Y, Takashi S, et al. Prophylactic cranial irradiation versus observation in patients with extensive-disease small-cell lung cancer: a multicenter, randomized, open-label, phase 3 trial. The Lancet Oncology, 18: 663-71, 2017. Gondi V, Paulus R, Bruner DW et al. Decline in tested and self-reported cognitive functioning following prophylactic cranial irradiation for lunc cancer: Pooled secondary analysis of RTOG randomized trials 0212 and 0214. Int J. Radiat Oncol Biol Phys. 86(4): 656-664, 2013. Rule WG, Foster NR, Meyers JP et al. Prophylactic cranial irradiation in elderly patients with small cell lung cancer: Findings from a North Central Cancer Treatment Group pooled analysis. Journal of Geriatric Oncology 6: 119-126, 2014. Farooqi AS, Holliday EB, Allen PK et al. Prophylactic cranial irradiation after definitive chemoradiotherapy for limited-stage small cell lung cancer: Do all patients benefit? Radiotherapy and Oncology 122: 307-312, 2017.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      PC 02.04 - PCI---NO (ID 7830)

      11:00 - 12:30  |  Presenting Author(s): Takashi Seto

      • Abstract
      • Presentation
      • Slides

      Abstract:
      What does prophylactic cranial irradiation (PCI) prevent in ED-SCLC? - Why isn’t the presence of brain metastasis evaluated before performing PCI? Background: In a European trial, prophylactic cranial irradiation (PCI) was performed on patients with extensive-disease small cell lung cancer (ED- SCLC). As a result, PCI was reported to reduce the incidence of symptomatic brain metastasis and to prolong patient survival. However, their treatments were completely different from our routine medical care. For example, they did not perform tests to examine whether there was a metastatic brain tumor before assignment to the PCI group or observation group and, after assignment, symptoms alone were observed and no imaging test was performed. For this reason, in Japan, we corrected this inconsistency of protocol and repeated the trial to determine whether PCI contributes to prolonged survival. Participants and method: Included in the current trial were patients who underwent two or more cycles of platinum-based combination chemotherapy, had achieved at least stable disease (SD), and had no metastatic brain tumor on their MRI. They were randomly assigned to either the PCI group or observation group. Follow-up with brain, chest and abdominal diagnostic imaging tests was performed every three months in both groups. Results: In the first pre-specified interim analysis, it was found that there was no possibility of improving patient prognosis using PCI even if the trial were continued. An independent data monitoring committee therefore terminated the trial. At that time, 224 cases had already been enrolled, with 113 cases assigned to the PCI group and 111 cases to the observation group. Median survival period in the final analysis was 11.6 months for the PCI group and 13.7 months for the observation group (hazard ratio, 1.27; 95% CI, 0.96 to 1.68). There was no statistically significant difference between the groups, but PCI actually tended to make the prognosis somewhat worse or, at least, did not improve prognosis in patients with ED-SCLC.Discussion: The biggest difference between the two trials was whether follow-up assessments were conducted using symptoms or brain MRI. In the current trial, it is impossible to estimate the proportion of asymptomatic brain metastasis cases; however, in the European trial, asymptomatic brain metastasis cases were also included, which means that there were in fact two different subgroups in the PCI group: a subgroup of patients with asymptomatic brain metastasis undergoing therapeutic cranial irradiation and a subgroup of patients without brain metastasis undergoing true PCI. It seems that the survival difference between patients with asymptomatic brain metastasis in the PCI group and in the observation group caused the apparent improvement of survival period. On the other hand, it is conjectured that PCI generated a lot of toxic effects in the patients without brain metastasis and that their survival curve tended to be inferior. PCI is a treatment to prevent new brain metastasis. One year of PCI reduces the incidence of new brain metastasis in no more than 30% of cases. For patients with MRI showing no metastatic brain tumor, needless PCI can be avoided by performing regular brain imaging tests, without impairing survival.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.



Author of

  • +

    MA 18 - Global Tobacco Control and Epidemiology II (ID 676)

    • Event: WCLC 2017
    • Type: Mini Oral
    • Track: Epidemiology/Primary Prevention/Tobacco Control and Cessation
    • Presentations: 1
    • +

      MA 18.14 - Non-Small Cell Lung Cancer (NSCLC) Treatment and Survival in Scandinavia: The SCAN-LEAF Study (ID 9295)

      15:45 - 17:30  |  Author(s): J.B. Sørensen

      • Abstract
      • Presentation
      • Slides

      Background:
      As the lung cancer treatment landscape evolves, it is important to understand changes in care and outcomes of patients with NSCLC. SCAN-LEAF objectives include describing NSCLC disease, treatments and health outcomes in Scandinavia (Denmark, Norway and Sweden). The present analyses examined treatment proportions and temporal trends in overall survival, drawing on national registry data.

      Method:
      NSCLC patients diagnosed 2005-2013 (follow-up until 2014) were included in the present analyses of this retrospective longitudinal cohort study. Patient characteristics and treatment described included demographics, disease stage at initial diagnosis [resectable: I-IIIA; locally advanced: IIIA-B (radiation therapy within 3 months); advanced: IIIB (no radiation therapy within 3 months)-IV], histology, non-drug treatment (surgery and radiation: present analyses include Norway and Sweden 2008-2014 only), and survival. Overall survival (OS) (%+95% CI) was calculated 1, 3, and 5 years post-diagnosis, by stage, and by diagnosis year.

      Result:

      Table 1. Proportion NSCLC patients from Denmark, Norway and Sweden diagnosed during 2005-2013 who survived 1, 3 and 5 years after diagnosis, by stage and calendar year of diagnosis.
      Stage at diagnosis & Calendar year of diagnosis % survived 1-, 3- and 5-years after NSCLC diagnosis
      1-year 3-year 5-year
      Resectable disease
      Overall 81.0% (80.4%, 81.6%) 56.8% (55.9%, 57.7%) 43.5% (42.5%, 44.6%)
      2005 74.7% (72.5%, 77.0%) 51.0% (48.5%, 53.6%) 40.0% (37.4%, 42.5%)
      2006 77.0% (74.8%, 79.2%) 53.3% (50.7%, 55.9%) 42.3% (39.7%, 44.8%)
      2007 78.6% (76.6%, 80.7%) 55.0% (52.5%, 57.5%) 43.5% (41.1%, 46.0%)
      2008 80.6% (78.6%, 82.5%) 56.4% (53.9%, 58.8%) 44.2% (41.7%, 46.7%)
      2009 79.7% (77.7%, 81.7%) 57.4% (55.0%, 59.8%) 45.8% (43.3%, 48.2%)
      2010 81.4% (79.6%, 83.2%) 59.1% (56.8%, 61.4%)
      2011 83.1% (81.4%, 84.7%) 61.2% (59.0%, 63.4%)
      2012 85.5% (84.0%, 87.0%)
      2013 84.2% (82.7%, 85.8%)
      p-value trend <0.0001 <0.0001 0.0008
      Locally advanced disease
      Overall 52.0% (51.0%, 53.0%) 18.4% (17.5%, 19.3%) 10.8% (9.9%, 11.6%)
      2005 45.7% (42.4%, 49.0%) 13.9% (11.6%, 16.2%) 7.8% (6.1%, 9.6%)
      2006 45.7% (42.3%, 49.1%) 15.4% (12.9%, 17.8%) 10.7% (8.6%, 12.9%)
      2007 51.5% (48.2%, 54.7%) 18.6% (16.0%, 21.1%) 11.0% (9.0%, 13.1%)
      2008 50.0% (46.7%, 53.3%) 17.0% (14.5%, 19.4%) 10.3% (8.3%, 12.3%)
      2009 50.9% (47.8%, 54.0%) 19.8% (17.4%, 22.3%) 12.9% (10.8%, 15.0%)
      2010 51.1% (48.1%, 54.1%) 18.9% (16.5%, 21.2%)
      2011 55.9% (53.1%, 58.7%) 21.2% (18.9%, 23.5%)
      2012 57.0% (54.2%, 59.9%)
      2013 56.1% (53.2%, 59.0%)
      p-value trend <0.0001 <0.0001 0.0021
      Advanced disease
      Overall 26.2% (25.7%, 26.6%) 6.3% (6.0%, 6.6%) 3.4% (3.2%, 3.7%)
      2005 24.4% (23.1%, 25.8%) 6.3% (5.5%, 7.0%) 3.5% (2.9%, 4.1%)
      2006 24.2% (22.8%, 25.5%) 6.1% (5.4%, 6.9%) 3.4% (2.8%, 4.0%)
      2007 25.7% (24.4%, 27.0%) 5.9% (5.2%, 6.6%) 3.1% (2.6%, 3.7%)
      2008 25.0% (23.7%, 26.3%) 6.0% (5.3%, 6.7%) 3.3% (2.8%, 3.9%)
      2009 26.5% (25.0%, 28.0%) 6.9% (6.0%, 7.8%) 3.9% (3.2%, 4.5%)
      2010 26.3% (24.9%, 27.7%) 7.0% (6.2%, 7.8%)
      2011 27.4% (26.1%, 28.8%) 6.2% (5.4%, 6.9%)
      2012 28.1% (26.7%, 29.5%)
      2013 27.9% (26.6%, 29.3%)
      p-value trend <0.0001 0.2480 0.5359
      66,012 NSCLC patients were diagnosed during 2005-2013 in Scandinavia (53.6% male, mean age 68.9 years); diagnosis stage: resectable (26%), locally advanced (15%), advanced (59%). In Norway and Sweden, surgery was performed on 58.5%, 9.9% and 1.9% of patients at resectable, locally advanced and advanced stage, respectively; radiation therapy in 28.0%, 58.0% and 30.4%, respectively. 1-yr OS gradually and significantly improved by calendar year of diagnosis for all disease stages. At 3 and 5 years post-diagnosis, OS was positively and significantly associated with calendar year of diagnosis for patients with resectable and locally advanced, but not advanced disease (Table 1).

      Conclusion:
      These analyses showed modest improvements in survival for patients with earlier stage disease over time. However, the majority of patients were diagnosed with advanced stage disease for which no improvement in temporal trends of survival was found, beyond one year post-diagnosis. This suggests an unmet need for effective treatments still remains, particularly for patients with advanced disease.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MA 19 - Mesothelioma: Bench to Bedside (ID 680)

    • Event: WCLC 2017
    • Type: Mini Oral
    • Track: Mesothelioma
    • Presentations: 1
    • +

      MA 19.03 - Nintedanib + Pemetrexed/Cisplatin in Malignant Pleural Mesothelioma (MPM): Phase II Biomarker Data from the LUME‑Meso Study (ID 8111)

      11:00 - 12:30  |  Author(s): J.B. Sørensen

      • Abstract
      • Presentation
      • Slides

      Background:
      Nintedanib is a triple angiokinase inhibitor. LUME-Meso (NCT01907100) is a randomised, Phase II/III study of ≤6 cycles of nintedanib+pemetrexed/cisplatin versus placebo+pemetrexed/cisplatin, followed by nintedanib or placebo maintenance, in chemo-naïve patients with MPM. In Phase II results, nintedanib+pemetrexed/cisplatin improved progression-free survival (PFS) versus control (hazard ratio [HR]=0.54; p=0.010), with a trend for prolonged overall survival (OS; HR=0.77; p=0.319). Benefit was most pronounced in patients with epithelioid tumours. Since no pharmacodynamic/predictive biomarkers are validated for anti-angiogenic therapies, exploratory analyses were conducted to investigate potential associations of plasma-derived angiogenic factors and genomic markers with treatment outcome in the LUME-Meso Phase II epithelioid population.

      Method:
      Blood samples were collected at baseline and, for patients receiving maintenance, at monotherapy Cycle 3 (C3mono) and end of monotherapy (EoTmono). Analyses focused on 58 angiogenic factors (Human AngiogenesisMAP[®] panel, Myriad RBM) and single-nucleotide polymorphisms (SNPs) in genes implicated in mesothelioma and/or associated with response to anti-angiogenic therapies in other tumour types (VEGFR1, VEGFR3 and mesothelin). Associations of biomarkers with treatment effect were evaluated by Cox regression and tested for interaction with false discovery rate (FDR) adjustment. Adjusted mean changes in angiogenic factor levels were compared between arms by ANCOVA. Analyses were exploratory, limited by small sample size, and considered hypothesis generating.

      Result:
      Of 77 patients with epithelioid tumours, angiogenic factor and genomic data were available for 71 and 67 patients, respectively. PFS/OS benefit of nintedanib appeared potentially more pronounced in patients with baseline plasma endoglin level below the median. There were possible weak associations between major homozygous genotypes for two VEGFR3 SNPs (rs307821 G/G and rs307826 A/A), and OS benefit and between VEGFR1 SNP rs9582036 A/A genotype and PFS benefit. Biomarker treatment associations were limited by small subgroup size, especially for low-frequency SNPs, and interaction tests were not significant after FDR adjustment. Regarding pharmacodynamic effects, adjusted mean change in interleukin-8 levels with nintedanib was greater from baseline to C3mono and lower from C3mono until EoTmono, compared with placebo. Nintedanib showed lower adjusted mean changes versus placebo for VEGFR2 from baseline to C3mono, and for VEGFR2 and VEGFR3 from baseline to EoTmono.

      Conclusion:
      These analyses represent the first biomarker results for nintedanib-treated MPM. While there seemed to be signals for greater PFS and OS improvement in patients with low plasma endoglin and major homozygous VEGFR1/3 genotypes, no biomarkers showed clear significant association with treatment benefit. These findings warrant further evaluation in the Phase III study.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P1.06 - Epidemiology/Primary Prevention/Tobacco Control and Cessation (ID 692)

    • Event: WCLC 2017
    • Type: Poster Session with Presenters Present
    • Track: Epidemiology/Primary Prevention/Tobacco Control and Cessation
    • Presentations: 1
    • +

      P1.06-012 - Non-Small Cell Lung Cancer (NSCLC) Patient Characteristics and Clinical Care Insights in Sweden: The SCAN-LEAF Study (ID 9537)

      09:30 - 16:00  |  Author(s): J.B. Sørensen

      • Abstract
      • Slides

      Background:
      Understanding non-small cell lung cancer (NSCLC) epidemiology and outcomes is fundamental for clinical decision-making. SCAN-LEAF is a retrospective longitudinal cohort study that aims to describe NSCLC epidemiology, clinical care, and outcomes of patients in Scandinavia. The present analyses examine clinical characteristics and disease management of a subset of these patients.

      Method:
      Cohort 2 (EMR data from Uppsala, Stockholm sites, extracted using the Pygargus Customized Extraction Platform (CXP 3.0) and linked to registry data) consisted of NSCLC patients diagnosed 2005-2013 (follow-up until 2014). Co-morbidity burden was calculated with the Charlson Co-morbidity Index (CCI). Descriptive statistics were calculated, stratified by disease stage at diagnosis [resectable: I-IIIA; locally advanced: IIIA-B (radiation therapy within 3 months); advanced: IIIB (no radiation therapy within 3 months)-IV].

      Result:
      48.4% of the 3984 patients were male. At diagnosis, mean age was 68.4 years with disease stage distribution: resectable (30.4%), locally advanced (10.5%), advanced (56.3%), not specified (2.7%). CCI distribution was similar between stages, as was BMI. Smoking status: never (7.4%), former smoker (34.7%), current smoker (25.6%), unknown (32.4%). Histology: adenocarcinoma (63.3%), squamous (20.5%), NSCLC NOS (Not Otherwise Specified) (16.2%). ECOG: 0/1 (48.4%), 2/3 (13.2%), 4 (2.2%), unknown (36.2%). Metastases at diagnosis were reported for 42.4% patients. 829 patients were tested for molecular sub-type EGFR (of which 751 had a valid test result, of which 14.6% were positive for the mutation) and 267 for ALK (of which 247 had a valid test result, of which 14.6% were positive for the rearrangement). More patients with locally advanced disease were treated with radiation than patients with resectable or advanced disease [(68.8%, n=289) vs (35.9%, n=436) and (47.4%, n=1064), respectively], and a greater proportion of locally advanced patients received systemic therapy [(72.1%, n=303) vs (39.4%, n=478) and (67.1%, n=1505), respectively]. The proportion of patients not treated with surgery, radiation, or systemic therapy (based on pre-selected procedure lists) was higher for advanced (22.3%, n=500) vs resectable (6.5%, n=79) and locally advanced disease (11.9%, n=50).

      Conclusion:
      SCAN-LEAF EMR data provides unique insights into Scandinavian NSCLC patient populations and treatments. These data suggest unmet medical need based on majority of patients being diagnosed at advanced stage and low numbers tested for molecular subtype mutation but we expect these dynamics to change over time. Additionally, our data suggest unmet treatment need in patients with advanced disease based on a high proportion receiving no surgery, radiation, or systemic therapy, whilst acknowledging potential for misclassification and/or missing treatment data.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P3.01 - Advanced NSCLC (ID 621)

    • Event: WCLC 2017
    • Type: Poster Session with Presenters Present
    • Track: Advanced NSCLC
    • Presentations: 1
    • +

      P3.01-007 - Heterogeneous Resistance Mechanisms in Rebiopsies from EGFR-Mutated NSCLC: Transformation to SCLC; FGFR3 and T790M Mutations (ID 8250)

      09:30 - 16:00  |  Author(s): J.B. Sørensen

      • Abstract
      • Slides

      Background:
      Patients with epidermal growth factor receptor (EGFR) gene-mutated NSCLC initially show substantial clinical benefit from EGFR Tyrosine-Kinase Inhibitors (TKIs), but will ultimately develop resistance with a median progression-free survival of 9-15 months. However, the type and timing of TKI-resistance cannot be predicted and several mechanisms may occur simultaneously/subsequently during TKI-treatment. We present a patient case with advanced non-small cell lung cancer (NSCLC) of adenocarcinoma subtype (ADC) with EGFR-mutation and Erlotinib-treated Different mechanisms of TKI-resistance were detected in tumor biopsies during treatment time.

      Method:
      The patient was a 49 year-old, previously healthy, Caucasian male with metastatic ADC. A diagnostic biopsy from hepatic metastasis, cytology from metastatic pleural effusion at first progression during TKI-therapy and a biopsy from new liver metastasis at second progression were analyzed by histology, immunohistochemistry and targeted next-generation sequencing (NGS) of hot-spot mutations in 50 cancer-related genes (Ion AmpliSeq Cancer Hotspot Panel v.2, Ion Torrent, Thermo Fisher Scientific).

      Result:
      CT-scans revealed tumor in the right upper lobe with mediastinal infiltration and multiple pulmonary and hepatic metastases, stage T4N2M1b. Diagnostic liver biopsy revealed ADC (mucin-producing, CK7- and TTF1-positive epithelial acinar structures), which concomitantly harbored an EGFR exon 19-mutation (p.E746_A750delELREA) and a previously unreported 2 bp microdeletion in the fibroblast growth factor receptor 3 (FGFR3; p.D785fs*31) gene. The patient received first-line Erlotinib but progressed after 7 weeks with metastatic pleural effusion, in which transformation to small cell lung cancer (SCLC) and maintenance of EGFR-mutation and FGFR3-mutation was identified. The progression was treated with standard Carboplatin-Etoposide regimen for SCLC together with Erlotinib continuation. The second progression 7 months later was a new liver-metastasis with persistence of the original EGFR- and FGFR3-mutated ADC-phenotype and additional emergence of the Erlotinib-resistant T790M EGFR-mutation. The patient rapidly deteriorated and deceased.

      Conclusion:
      Thus, in this advanced EGFR-mutated NSCLC rapid onset and heterogeneous mechanisms of TKI-resistance occurred at different times of metastatic disease: 1. Concomitant FGFR3-mutation prior to and during TKI-treatment as potential intrinsic resistance-mechanism; 2. Transformation to SCLC at 1st progression during TKI-therapy; 3. Acquisition of T790M EGFR-mutation at 2nd progression. This suggests a continuous variation of TKI-resistant cells’ genetic and phenotypic behavior. Therefore, re-biopsies are important to provide the current status of the disease and better define subsequent treatment options. “Liquid biopsies” may potentially help identify heterogeneous genetic resistance-mechanisms; however assessment of mechanisms such as SCLC-transformation needs tissue biopsies

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.