Virtual Library

Start Your Search

S. Cuffe



Author of

  • +

    OA 17 - Immunotherapy II (ID 683)

    • Event: WCLC 2017
    • Type: Oral
    • Track: Immunology and Immunotherapy
    • Presentations: 1
    • +

      OA 17.06 - Updated Analysis of KEYNOTE-024: Pembrolizumab vs Platinum-Based Chemotherapy for Advanced NSCLC With PD-L1 TPS ≥50% (ID 9582)

      14:30 - 16:15  |  Author(s): S. Cuffe

      • Abstract
      • Presentation
      • Slides

      Background:
      KEYNOTE-024 (ClinicalTrials.gov, NCT02142738) is a multicenter, international, phase 3, randomized, open-label, controlled trial of treatment with the anti‒PD-1 antibody pembrolizumab vs platinum-based chemotherapy as first-line therapy for patients with advanced NSCLC of any histology with PD-L1 tumor proportion score (TPS) ≥50% and without EGFR mutations or ALK translocations. Results from the primary analysis of KEYNOTE-024 demonstrated that after a median follow-up of 11.2 months, pembrolizumab significantly improved PFS (HR=0.50; P<0.001) and OS (HR=0.60; P=0.005) and was associated with a lower rate of treatment-related AEs compared with chemotherapy.

      Method:
      Patients were randomly assigned to receive either 35 cycles of pembrolizumab 200 mg every 3 weeks or 4–6 cycles of investigator's choice of carboplatin/cisplatin + gemcitabine, carboplatin + paclitaxel, or carboplatin/cisplatin + pemetrexed with optional pemetrexed maintenance (for those with non-squamous histology). Randomization was stratified by ECOG performance status (0 vs 1), histology (squamous vs nonsquamous), and geographic region (East Asia vs non–East Asia). Treatment continued until disease progression per RECIST version 1.1, intolerable toxicity, or withdrawal of consent. Patients in the chemotherapy arm who experienced disease progression could cross over to receive pembrolizumab monotherapy. Response was assessed every 9 weeks by blinded independent central review per RECIST version 1.1. The primary endpoint was PFS; secondary endpoints were OS, ORR, and safety.

      Result:
      305 patients were enrolled (pembrolizumab, n=154; chemotherapy, n=151). At the time of data cutoff (July 10, 2017) after a median follow-up of 25.2 months, 73 patients (47.4%) in the pembrolizumab arm and 96 patients (63.6%) in the chemotherapy arm had died. The hazard ratio for OS was 0.63 (95% CI, 0.47–0.86; nominal P=0.002). Median (95% CI) OS was 30.0 (18.3–not reached) months in the pembrolizumab arm and 14.2 (9.8–19.0) months in the chemotherapy arm. The Kaplan-Meier estimate of OS at 12 months was 70.3% (95% CI, 62.3%–76.9%) for the pembrolizumab group and 54.8% (95% CI, 46.4%–62.4%) for the chemotherapy group. 82 patients allocated to the chemotherapy arm crossed over to receive pembrolizumab upon meeting eligibility criteria. Treatment-related adverse events were less frequent in the pembrolizumab arm than in the chemotherapy arm (76.6% versus 90.0%, respectively) as were treatment-related grade 3-5 adverse events (31.2% versus 53.3%).

      Conclusion:
      With more than half of patients having OS events and prolonged follow‒up, first-line pembrolizumab monotherapy remains superior to platinum-based chemotherapy despite the crossover from the control arm to an anti-PD1 inhibitor as subsequent therapy.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P1.02 - Biology/Pathology (ID 614)

    • Event: WCLC 2017
    • Type: Poster Session with Presenters Present
    • Track: Biology/Pathology
    • Presentations: 1
    • +

      P1.02-011 - XRCC6BP1: A Key Player in the DNA Repair of Cisplatin Resistant NSCLC Cells (ID 10225)

      09:30 - 16:00  |  Author(s): S. Cuffe

      • Abstract
      • Slides

      Background:
      Alterations in the DNA repair capacity of damaged cells is now recognised as an important factor in mediating resistance to chemotherapeutic agents.

      Method:
      DNA Repair Pathway RT[2 ]Profiler Arrays were used to elucidate key DNA repair genes implicated in chemoresistant NSCLC cells using cisplatin resistant (CisR) and corresponding parental (PT) H460 cells previously established in our laboratory. DNA repair genes significantly altered in CisR cells were validated at the mRNA and protein level, using RT-PCR and Western blot analysis, respectively. The translational relevance of differentially expressed genes was examined in a cohort of chemo-naïve matched normal and tumour lung tissues from NSCLC patients. Loss of function studies were carried out using siRNA technology. The effect of XRCC6BP1 gene knockdown on apoptosis was assessed by FACS using Annexin-V/PI staining. Cellular expression and localisation of XRCC6BP1 protein and H2AX foci in response to cisplatin were examined by immunofluorescence using the Cytell Imaging System. To investigate a role for XRCC6BP1 in lung cancer stem cells, Side Population (SP) studies were used to characterise stem-like cells in a panel of chemoresistant cell lines. XRCC6BP1 mRNA analysis was also examined in ALDH1[+] and ALDH1[- ]subpopulations. Immunohistochemistry analysis was carried out on a cohort of resected lung tumour tissues (n=20) and XRCC6BP1 expression was correlated with clinicopathological parameters.

      Result:
      We identified a number of critical DNA repair genes that were differentially regulated between H460 PT and CisR NSCLC cells, where XRCC6BP1 mRNA and protein expression was significantly increased (mRNA; 19.4-fold) in H460 CisR cells relative to their PT counterparts. Relative to matched normal lung tissues, XRCC6BP1 mRNA was significantly increased in lung adenocarcinoma patients. Gene silencing of XRCC6BP1 induced significant apoptosis of CisR cells and reduced the DNA repair capacity of these cells relative to scrambled (negative) controls. Immunofluorescence studies showed an increase in XRCC6BP1 protein expression and H2AX foci in CisR cells relative to their PT counterparts. While SP analysis revealed a significantly higher stem cell population in CisR cells, XRCC6BP1 mRNA expression was considerably increased in SKMES-1, H460 and H1299 ALDH1[+] CisR cells compared to ALDH1[-] cells. Data analysis of XRCC6BP1 immunohistochemistry is currently ongoing.

      Conclusion:
      We identified XRCC6BP1 as key DNA repair gene implicated in cisplatin resistant NSCLC. Our data highlight the potential of targeting components of the DNA repair pathway in chemoresistant lung cancer, in particular XRCC6BP1, either alone or in combination with conventional cytotoxic therapies.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.