Virtual Library

Start Your Search

Noemi Reguart



Author of

  • +

    P1.01 - Advanced NSCLC (ID 757)

    • Event: WCLC 2017
    • Type: Poster Session with Presenters Present
    • Track: Advanced NSCLC
    • Presentations: 1
    • +

      P1.01-075 - Simultaneous Multiplex Profiling of Gene Fusions, METe14 Mutations and Immune Genes in Advanced NSCLC by NCounter Technology (ID 9481)

      09:30 - 16:00  |  Presenting Author(s): Noemi Reguart

      • Abstract
      • Slides

      Background:
      Assessment of several immune-genes and tumor drivers is critical for individualized treatment of non-small cell lung cancer (NSCLC). We have previously demonstrated the ability of the transcript-based nCounter Technology for the detection of ALK, ROS1 and RET gene fusions, using a customized codeset (Reguart et al. Clinical Chemistry 2017). Here, we present the first results of the validation in advanced NSCLC samples of a new CodeSet designed to simultaneously characterize clinically relevant gene fusions, MET alterations and the expression of immune genes.

      Method:
      We have designed an in-house custom set to detect driver fusions involving 4 genes (ALK, ROS, RET, NTRK), MET exon 14 skipping mutation, MET overexpression and immune genes (PD1, PDL-1, CD4, CD8, FOXP3, GZMM, IFNG). A panel of ALK-ROS-RET-NTRK positive cell lines (H2228, H3122, SU-DHL-1, HCC78, BaF3 pBABE, LC2/ad and a NTRK-positive cell line), Hs746T (METex14), EBC-1 (overexpressing MET) and a negative cell line (PC9) were used for the initial validation of the panel. Subsequently, 58 FFPE samples from advanced NSCLC patients, previously characterized by FISH, RT-PCR and IHC, have been analyzed. Total amount of 100-150 ng RNA was used for detection. Workflow includes RNA isolation, hybridization and digital counting with for a total turnaround of 3 days. Raw counts were normalized using positive controls, negative controls and house-keeping genes.

      Result:
      .Results obtained with the cell lines positive for ALK, ROS1, RET and NTRK1 fusion genes were exactly coincident with their genotypes, with fusion transcripts successfully detected in all cases by 3’/5’ imbalance and direct fusion probes. In addition, METex14 splicing transcripts were detected in the Hs746T cells at significant levels, higher than those of wt MET mRNA. In contrast, METex14 mRNA counts were almost undetectable in the rest of cell lines. Regarding FFPE samples from advanced patients, 46 could be successfully analyzed by nCounter. Among 13 patients positive for ALK and ROS1 fusions, 12 were confirmed by nCounter. Regarding the METex14 splicing variant, 5 out of 6 patients previously detected by RT-PCR were also positive by nCounter.

      Conclusion:
      Preliminary data suggest that multiplex detection of clinically relevant drivers can be successfully achieved using nCounter Technology. The assay is simple, requires short hands-on-time, needs low input RNA and is highly efficient in detecting gene rearrangements and METex14 splicing variants. Results will be prospectively validated in a larger cohort of advanced NSCLC patients and we will determine if clusters of different inmune-phenotypes exist among oncogenic-driven NSCLC tumors.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P2.02 - Biology/Pathology (ID 616)

    • Event: WCLC 2017
    • Type: Poster Session with Presenters Present
    • Track: Biology/Pathology
    • Presentations: 1
    • +

      P2.02-014 - Simultaneous Gene Profiling of Advanced NSCLC: Single-Molecule Quantification of DNA and RNA by nCounter3D™ Technology (ID 9808)

      09:30 - 16:00  |  Author(s): Noemi Reguart

      • Abstract
      • Slides

      Background:
      Currently, assessment of several tumor drivers is critical for individualized treatment of non-small cell lung cancer (NSCLC). Tools for molecular profiling are based on DNA, RNA and protein (PCR, NGS, FISH, IHC). However, these tests have several disadvantages including hands-on-time and tissue mass requirements. Nanostring digital barcoding technology enables simultaneous assay of different analytes, DNA and RNA from a single sample with 3D Biology Technology.

      Method:
      The nCounter Vantage 3D SNV:Fusions Lung Assay was used to analyze a total of 36 formalin-fixed paraffin embedded (FFPE) samples from advanced NSCLC patients. Samples were known to harbor mutations (EGFR, KRAS, NRAS, PIK3CA, BRAF, P53) or gene-fusion rearrangements (ALK, ROS1, RET, NTRK1) as verified by sequencing (Ion Torrent, Gene Reader), nCounter Elements, IHC and/or FISH. Probes were designed to target 25 genes for SNVs (104 different point and InDel mutations) as well as four genes for fusion transcripts (ALK, ROS1, RET, NTRK1) including 33 specific variants. The 3D workflow requires pre-amplification of gDNA, whereas RNA does not require any enzymatic treatment. After hybridization, the analytes (DNA/RNA) are pooled for simultaneous, single-lane, digital counting in total turnaround of 3 days. A total amount of 5ng DNA and 150ng RNA from two4-micron FFPE-sections was used for the assay without microdissection.

      Result:
      A total of 72 analyses (DNA/RNA) were performed with an evaluation pass of 97.2% (70/72 analyses yielded results) and 89% concordant results (64/72). Sensitivity of the technique was 92.1%. Among 41 SNVs interrogated in this study 34 were successfully detected (two not evaluable). Five new mutations were found involving NRAS, FBXW7, GNA11, FGFR2 and KRAS genes. Of those, only two were considered false positives as they were not confirmed by alternative sequencing and/or PCR. The remaining three were not assessable for test confirmation. For gene fusion analysis, 13 known positive samples were tested. All fusion transcripts were detected for ALK (n=5) RET (n=2) and NTRK1 (n=1). For ROS1 (n=5) there were 2 false negatives only detected by nCounter Elements target-specific assay.

      Conclusion:
      We have shown that the SNV detection chemistry can be successfully combined with fusion gene expression analysis by using the nCounter 3D™ single-workflow. The Nanostring nCounter Vantage 3D SNV:Fusions Lung Assay is highly efficient in detecting hotspot mutations as well as gene rearrangements. The assay is simple, features a brief hands-on time and requires low amounts of genomic material, supporting minimal use of precious samples.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P2.04 - Clinical Design, Statistics and Clinical Trials (ID 705)

    • Event: WCLC 2017
    • Type: Poster Session with Presenters Present
    • Track: Clinical Design, Statistics and Clinical Trials
    • Presentations: 1
    • +

      P2.04-005 - GEOMETRY Mono-1: Phase II, Multicenter Study of MET Inhibitor Capmatinib (INC280) in EGFR Wt, MET-Dysregulated Advanced NSCLC (ID 8961)

      09:30 - 16:00  |  Author(s): Noemi Reguart

      • Abstract
      • Slides

      Background:
      Amplification of MET leading to oncogenic signaling occurs in 3‒5% of newly diagnosed EGFR wild type (wt) non-small cell lung cancer (NSCLC) cases with decreasing incidence at higher levels of amplification. Mutations in MET leading to exon 14 deletion (METΔ[ex14]) also occur in 2–4% of adenocarcinoma and 1–2% of other NSCLC subsets. Capmatinib (INC280) is a potent and selective MET inhibitor that has shown strong evidence of antitumor activity in a phase I study in patients with EGFR wt advanced NSCLC harboring MET amplification and METΔ[ex14].

      Method:
      This phase II, multicenter study (NCT02414139) was designed to confirm the clinical activity of capmatinib in patients with advanced NSCLC by MET amplification and METΔ[ex14] status. Eligible patients (≥18 years of age, Eastern Cooperative Oncology Group Performance Status 0–1) must have ALK-negative, EGFR wt, stage IIIB/IV NSCLC (any histology). Centrally assessed MET amplification (gene copy number [GCN]) and mutation status is used to assign patients to one of the below cohorts: Pretreated with 1–2 prior systemic lines of therapy for advanced setting (cohorts 1–4): 1a: MET amplification GCN ≥10 (n=69) 1b: MET amplification GCN ≥6 and <10 (n=69) 2: MET amplification GCN ≥4 and <6 (n=69) 3: MET amplification GCN <4 (n=69) 4: METΔ[ex14] mutation regardless of MET GCN (n=69) Treatment naïve (cohorts 5a and 5b): 5a: MET amplification GCN ≥10 and no METΔ[ex14] mutation (n=27) 5b: METΔ[ex14] mutation regardless of MET GCN (n=27) Capmatinib 400 mg tablets are orally administered twice daily on a continuous dosing schedule 12 hours apart. Primary and key secondary endpoints are overall response rate (ORR) and duration of response (DOR), respectively (blinded independent review assessment). Other secondary endpoints include investigator-assessed ORR, DOR, time to response, disease control rate, progression-free survival (independent and investigator assessment), safety, and pharmacokinetics. Enrollment is ongoing in 25 countries. Cohorts 1b, 2, and 3 are now closed to enrollment; cohorts 1a and 4 continue to enroll patients who have received 1–2 prior lines of therapy in the advanced setting, and cohorts 5a and 5b are open for enrollment of treatment-naïve patients. Responses have been seen in both MET-amplified and MET-mutated patients irrespective of the line of therapy.

      Result:
      Section not applicable

      Conclusion:
      Section not applicable

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P3.01 - Advanced NSCLC (ID 621)

    • Event: WCLC 2017
    • Type: Poster Session with Presenters Present
    • Track: Advanced NSCLC
    • Presentations: 2
    • +

      P3.01-045 - Correlation of EGFR Mutation Detection in CtDNA by Two Different Platforms in Advanced NSCLC Patients from a Single Institution (ID 9475)

      09:30 - 16:00  |  Presenting Author(s): Noemi Reguart

      • Abstract

      Background:
      Circulating-free tumor DNA (ctDNA) has emerged as a sensitive and feasible non-invasive blood-based approach alternative to tissue biopsies to screen for genetic drivers in advanced non-small cell lung cancer (NSCLC) patients. Recently, the COBAS Mutation Test has been FDA-approved for the detection of EGFR mutation (EGFRm) in peripheral blood but other approaches are currently used in clinical practice. Here, we aimed to correlate two different platforms for EGFRm monitoring ctDNA in an enriched cohort of tissue-genetically phenotyped EGFRm advanced NSCLC patients.

      Method:
      Blood samples were prospectively obtained from an enriched cohort of EGFR+ advanced NSCLC patients. Formalin-fixed paraffin-embedded (FFPE) tumor was characterized by NGS (Ion AmpliSeq Lung Cancer Research Panel v.2) in all patients at diagnose. Plasma ctDNA derived from peripheral whole blood was evaluated by COBAS EGFR Mutation Test v2 and a Peptide Nucleic Acid (PNA) probe–based real-time polymerase chain reaction blinded to baseline tumor genotype. Diagnostic accuracy and concordance of both blood techniques was used for direct comparison with respect to the molecular status of FFPE tissue.

      Result:
      A total of 80 matched pairs of peripheral blood samples from 40 patients were collected. Baseline tissue NGS reported mutations at exon 19 del (n=23), exon 21 (n=10), exon 18 (n=2), exon 20 (n=2) and T790M (n=3). Four wild-type EGFR tumors were used as controls. Blood samples were obtained at diagnose (n=12) and during tyrosine-kinase inhibitor (TKi) treatment for monitoring (n=28). Overall, concordance between both blood-based techniques with respect tissue-NGS was 100% (4/4) for negative controls and 55% (20/36) for positive tissue-NGS samples. Detection based on PNA and COBAS was negative in 60% (24/40) and 32.5% (13/40) patients respectively. Among 19 samples negative by PNA at monitoring, COBAS allowed plasma EGFRm detection in 11 patients. At baseline, the only two negative samples patients by both techniques were found in patients with localized brain disease. Six patients had detectable driver T790M mutation; among three patients with T790M+ in tissue, COBAS allowed detection in plasma in one patient whereas none was identified with PNA. The other three patients had acquired T790M mutations identified only in blood, all by COBAS.

      Conclusion:
      In this prospective blinded validation cohort, both methods retained high specificity. However, major differences between techniques were observed for longitudinal monitoring of EGFRm in blood.

    • +

      P3.01-073 - TPX-0005 with an EGFR Tyrosine Kinase Inhibitor (TKI) Overcomes Innate Resistance in EGFR Mutant NSCLC (ID 8956)

      09:30 - 16:00  |  Author(s): Noemi Reguart

      • Abstract
      • Slides

      Background:
      Overexpression of several receptor tyrosine kinases (RTKs) substitutes EGFR signaling in EGFR-mutant NSCLC. The MET ligand hepatocyte growth factor (HGF) provides an alternative signaling mechanism for EGFR by inducing inter-receptor cross talk with EphA2, CUB domain-containing protein-1 (CDCP1) or AXL. SHP2, a non-receptor protein tyrosine phosphatase is central in signal transduction downstream of RTK signaling and in Src activation. We previously demonstrated that STAT3 and Src-YAP1 signaling limits EGFR TKI efficacy in EGFR-mutant NSCLC. We are now exploring the possibility of multiple RTK activation through a Src-YAP1-mediated transcriptional program. We are evaluating whether combined EGFR inhibition with TPX-0005, a novel orally available multikinase inhibitor and potent Src/FAK and JAK2 inhibitor, can be more efficient than EGFR inhibition alone in EGFR-mutant NSCLC cells.

      Method:
      We studied the mRNA expression levels of stromal HGF and tumor RTKs, AXL, CDCP1, MET, and EphA2, as well as SHP2, and clinical outcome in baseline samples of 64 EGFR-mutant NSCLC patients treated with first-line EGFR TKI. We combined in vitro approaches to explore whether gefitinib or osimertinib combined with TPX-0005 can abolish STAT3 and Src-YAP1 and downregulate the expression of RTKs.

      Result:
      High levels of AXL, CDCP1 and SHP2 mRNA expression were associated with worse outcome to EGFR TKI in 64 EGFR-mutant NSCLC patients. Median progression-free survival (PFS) was 14.5 and 23.4 months for patients with high and low AXL mRNA, respectively (p=0.0359). Median PFS was 9.1 and 20.2 months for patients with high and low CDCP1 mRNA, respectively (p=0.0179). Tumoral EPHA2 and MET or stromal HGF levels did not affect PFS. Median PFS was 11.4 and 24.1 months for patients with high and low SHP2 mRNA, respectively (p=0.0094). The combination of gefitinib/osimertinib with TPX-0005 resulted in highly synergistic suppression of cell viability and reduced colony formation in two EGFR-mutant cell lines. The combination abolished the EGFR inhibition-induced STAT3 and YAP1 phosphorylation, as confirmed by western blotting and immunofluorescence. The results of TaqMan quantitative-PCR assay revealed that gefitinib/osimertinib plus TPX-0005 reduced the mRNA levels of AXL, CDCP1 and MET, an effect that could not be obtained with EGFR inhibition alone. In vivo experiments are ongoing.

      Conclusion:
      AXL and CDCP1 are adverse predictive markers of PFS in EGFR-mutant NSCLC patients. STAT3 and Src-YAP1 signaling limits the efficacy EGFR TKI. Combined EGFR inhibition with TPX-0005 (currently in phase I clinical testing) is a particularly attractive strategy

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P3.03 - Chemotherapy/Targeted Therapy (ID 719)

    • Event: WCLC 2017
    • Type: Poster Session with Presenters Present
    • Track: Chemotherapy/Targeted Therapy
    • Presentations: 1
    • +

      P3.03-023 - Nintedanib Selectively Inhibits the Activation and Tumor-Promoting Effects of Fibroblasts from Lung Adenocarcinoma Patients (ID 9981)

      09:30 - 16:00  |  Presenting Author(s): Noemi Reguart

      • Abstract
      • Slides

      Background:
      There is growing awareness that tumor-associated fibroblasts (TAFs) play critical roles in both tumor progression and response to therapies in solid tumors including non-small cell lung cancer (NSCLC). Nintedanib (NTD) is a multi-kinase inhibitor of VEGF, FGF and PDGF receptors that has been recently approved to treat advanced lung adenocarcinoma (ADC) patients in combination with docetaxel. The main goal of this study was to assess how TAFs contribute to the selective therapeutic effects of NTD in lung ADC.

      Method:
      Because TAFs are largely activated in vivo, patient derived lung TAFs from ADC and squamous cell carcinoma (SCC) patients as well as paired control fibroblasts from non-malignant pulmonary tissue were activated with TGF- β1 in the presence of increasing concentrations of NTD. Conditioned medium was also collected and used to stimulate the growth and invasion of several cancer cell lines. A panel of activation markers indicative of fibrosis were analyzed in TAFs, including alpha-smooth muscle actin, collagen-I/III and P4HA2.

      Result:
      Nintedanib dose-dependently inhibited the TGF-β1-induced expression of all activation markers in both ADC-TAFs and control fibroblasts derived from uninvolved lung parenchyma, whereas such inhibiton was very modest in SCC-TAFs, suggesting that TAF activation is regulated by different mechanisms in ADC and SCC. Remarkably, nintedanib abrogated the stimulation of growth and invasion in a panel of carcinoma cell lines induced by the conditioned medium from activated TAFs in ADC but not SCC. These results reveal that the pro-tumorigenic effects of ADC-TAFs in vitro are markedly reduced in the presence of NTD.

      Conclusion:
      These results reveal that nintedanib is an effective inhibitor of fibrosis and its associated tumor-promoting effects in ADC, and that the poor antifibrotic response of SCC-TAFs to nintedanib may contribute to the differential clinical benefit observed in both subtypes. Our findings also support that preclinical models based on carcinoma-TAF interactions may help defining the mechanisms of the poor antifibrotic response of SCC-TAFs to nintedanib and testing new combined therapies to further expand the therapeutic effects of this drug in solid tumors.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.