Virtual Library

Start Your Search

J.W. Riess



Author of

  • +

    MA16 - Novel Strategies in Targeted Therapy (ID 407)

    • Event: WCLC 2016
    • Type: Mini Oral Session
    • Track: Chemotherapy/Targeted Therapy/Immunotherapy
    • Presentations: 1
    • +

      MA16.03 - Global RET Registry (GLORY): Activity of RET-Directed Targeted Therapies in RET-Rearranged Lung Cancers (ID 4325)

      14:20 - 15:50  |  Author(s): J.W. Riess

      • Abstract
      • Presentation
      • Slides

      Background:
      GLORY is a global registry of patients with RET-rearranged non-small cell lung cancer (NSCLC). In order to complement ongoing prospective studies, the registry’s goal is to provide data on the efficacy of RET-directed targeted therapies administered outside the context of a clinical trial. We previously reported results from our first interim analysis (Gautschi, ASCO 2016). Following additional accrual into the registry, updated results are presented here, with a focus on an expanded efficacy analysis of various RET inhibitors.

      Methods:
      A global, multicenter network of thoracic oncologists identified patients with pathologically-confirmed NSCLC harboring a RET rearrangement. Molecular profiling was performed locally via RT-PCR, FISH, or next-generation sequencing. Anonymized data including clinical, pathologic, and molecular features were collected centrally and analyzed by an independent statistician. Response to RET tyrosine kinase inhibition (TKI) administered off-protocol was determined by RECIST1.1 (data cutoff date: April 15, 2016). In the subgroup of patients who received RET TKI therapy, the objectives were to determine overall response rate (ORR, primary objective), progression-free survival (PFS), and overall survival (OS).

      Results:
      165 patients with RET-rearranged NSCLC from 29 centers in Europe, Asia, and the USA were accrued. The median age was 61 years (range 28-89 years). The majority of patients were female (52%), never smokers (63%), with lung adenocarcinomas (98%) and advanced disease (91%). The most frequent metastasic sites were lymph nodes (82%), bone (51%) and lung (32%). KIF5B-RET was the most commonly identified fusion (70%). 53 patients received at least one RET-TKI outside of a clinical protocol, including cabozantinib (21), vandetanib (11), sunitinib (10), sorafenib (2), alectinib (2), lenvatinib (2), nintedanib (2), ponatinib (2) and regorafenib (1). In patients who were evaluable for response (n=50), the ORR was 37% for cabozantinib, 18% for vandetanib, and 22% for sunitinib. Median PFS was 3.6, 2.9, and 2.2 months and median OS was 4.9, 10.2, and 6.8 months for cabozantinib, vandetanib, and sunitinib, respectively. Responses were also observed with nintedanib and lenvatinib. Among patients who received more than one TKI (n=10), 3 partial responses were achieved after prior treatment with a different TKI.

      Conclusion:
      RET inhibitors are active in individual patients with RET-rearranged NSCLC, however, novel therapeutic approaches are warranted with the hope of improving current clinical outcomes. GLORY remains the largest dataset of patients with RET-rearranged NSCLC, and continues to accrue patients.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    OA06 - Prognostic & Predictive Biomarkers (ID 452)

    • Event: WCLC 2016
    • Type: Oral Session
    • Track: Biology/Pathology
    • Presentations: 1
    • +

      OA06.01 - Clinical Utility of Circulating Tumor DNA (ctDNA) Analysis by Digital next Generation Sequencing of over 5,000 Advanced NSCLC Patients (ID 6096)

      14:20 - 15:50  |  Author(s): J.W. Riess

      • Abstract
      • Presentation
      • Slides

      Background:
      Detection of actionable genomic alterations is now required for NCCN guideline-compliant work-up of NSCLC adenocarcinoma. Next-generation sequencing (NGS) of ctDNA, if sufficiently sensitive and specific, could provide a non-invasive, comprehensive genotyping platform relevant to clinical decision-making when tissue is insufficient or at time of progression on targeted therapies.

      Methods:
      A highly accurate, deep-coverage (15,000x) ctDNA plasma NGS test targeting 54-70 genes (Guardant360) was used to genotype 5,206 advanced-stage NSCLC patients accrued between 6/2014 – 4/2016. The frequency and distribution of somatic alterations in key genes were compared to those described in TCGA (Pearson and Spearman correlations). The clinical impact of ctDNA testing was evaluated by identification of resistance mechanisms emergent at progression on targeted therapies, and through analysis of additional driver mutations detected by ctDNA at baseline in 362 consecutive NSCLC patients with tissue mutation data available. The positive predictive value (PPV) of ctDNA sequencing was assessed in 229 patients with known tumor driver alterations.

      Results:
      ctDNA alterations were detected in 86% of cases; EGFR mutations in 25%, KRAS mutations in 17%, MET amplification in 4%, BRAF mutations in 3% and other rare but potentially actionable alterations in 9%. Mutation patterns among driver oncogenes were highly consistent with those from TCGA (Pearson r=0.92, 0.99, 0.99 for EGFR, KRAS, and fusion breakpoint location). PPV of ctDNA-detected variants was 100% for EGFR[L858R], 98% for EGFR[E19del], 96% for ALK, RET, or ROS1 fusions, and 100% for KRAS[G12/G13/Q61] mutations. In 362 cases with tissue information available, 63% (229/362) were tissue quantity-insufficient or undergenotyped (QNS/UG). ctDNA analysis identified driver mutations in 51 of the 229 QNS/UG cases, a 38% increase in detection rate over tissue alone. Among 1,111 EGFR-mutant cases, resistance mutations were identified at progression at frequencies consistent with published literature: EGFR[T790M] 47%, MET amp 5%, ERBB2 amp 5%, FGFR3 fusions 0.4%, ALK/other fusions 1%, BRAF mutations 1.8%, PTEN inactivation 2.5%, NF1 inactivation 3%, RB1 inactivation 3%, KRAS mutations 1.9%. In 143 consecutive NSCLC patients with detailed follow-up and serial analysis seen at the UC Davis Cancer Center, informative driver mutations were observed in 48 (34%).

      Conclusion:
      This series represents the largest NSCLC ctDNA study to date. Genotypic patterns of truncal mutations were highly consistent with TCGA in terms of frequency and distribution. At baseline, ctDNA augmented tissue analysis by identifying additional, actionable mutations when tissue was QNS/UG. ctDNA NGS conducted at progression identified emergent resistance mutations that could inform subsequent courses of therapy.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    OA10 - EGFR Mutations (ID 382)

    • Event: WCLC 2016
    • Type: Oral Session
    • Track: Biology/Pathology
    • Presentations: 1
    • +

      OA10.01 - Comprehensive Genomic Profiling and PDX Modeling of EGFR Exon 20 Insertions: Evidence for Osimertinib Based Dual EGFR Blockade (ID 4375)

      11:00 - 12:30  |  Author(s): J.W. Riess

      • Abstract
      • Slides

      Background:
      EGFR exon 20 insertion mutations (EGFRex20ins) comprise a subset of EGFR activating alterations relatively insensitive to 1[st] and 2[nd] generation EGFR-TKIs. Comprehensive genomic profiling (CGP) integrated with PDX modeling may identify new EGFR-inhibition strategies for EGFRex20ins.

      Methods:
      EGFRex20ins and co-occurring genomic alterations were identified by hybrid-capture based CGP performed on 14,483 consecutive FFPE lung cancer specimens to a mean coverage depth of >650X for 236 or 315 cancer-related genes plus 47 introns from 19 genes frequently rearranged in cancer. An EGFRex20ins(N771_P772>SVDNP)/EGFR-amplified tumor (24 copies) from this cohort was implanted subcutaneously into the flank of NOD.Cg-Prkdc[scid]Il2rg[tm1Wjl]/SzJ (NSG) mice for tumor growth inhibition studies (TGI) with vehicle, erlotinib (50 mg/kg PO daily), osimertinib (25 mg/kg PO daily), and osimertinib (25 mg/kg PO daily) plus cetuximab (10 mg/kg IV, 2x/week) administered for 21 days.

      Results:
      CGP identified 263/14,483 cases (1.8%) with EGFRex20ins, which represent 12% (263/2,251) of EGFR activating mutations in this series. 90% (237/263) were NSCLC-adenocarcinoma, 9% (23/263) were NSCLC-NOS, and 1% (2/263) were sarcomatoid carcinoma. Over 60 unique EGFRex20ins were identified, most commonly D770_N771>ASVDN (21%) and N771_P772>SVDNP (20%); 6% (15/263) harbored EGFR A763_Y764insFQEA, an EGFRex20ins typically sensitive to erlotinib. Among EGFRex20ins cases, EGFR-amplification occurred in 22% (57/263). Putative co-occurring driver alterations including EGFR (ex19del and L858R), Her2, MET and KRAS tended to be mutually exclusive, occurring only in 5% (12/263) of cases. The most common co-occurring alterations affected TP53 (56%), CDKN2A (22%), CDKN2B (16%), NKX2-1 (14%) and RB1 (11%). Average tumor mutation burden was low (mean 4.3 mutations/Mb, range 0-40.3 mutations/Mb). Clinical outcomes to 1st and 2nd generation EGFR-TKIs were obtained for a subset of cases with various EGFRex20ins, and 0/6 patients had responses. However, robust TGI was observed with combination osimertinib and cetuximab in a highly EGFR-amplified PDX model with a conserved EGFRex20ins (N771_P772>SVDNP) not associated with response to earlier generation EGFR-TKI, and was superior to vehicle, erlotinib or osimertinib alone (D21 mean tumor size 70 mm[3] vs. 1000, 800, 225 mm[3] respectively; p-values all <0.001).

      Conclusion:
      Diverse EGFRex20ins were detected in 12% of EGFR-mut NSCLC. Available clinical outcomes data demonstrated lack of response to 1[st] and 2[nd] generation EGFR-TKIs. Identification of co-occurring EGFR-amplification in 22% of cases led to testing of a dual EGFR blockade strategy with an EGFR monoclonal antibody and osimertinib, which demonstrated exceptional tumor growth inhibition in an EGFRex20ins PDX minimally responsive to erlotinib. These findings can rapidly be translated into an ongoing clinical trial of osimertinib and necitumumab.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P3.02c - Poster Session with Presenters Present (ID 472)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Advanced NSCLC
    • Presentations: 1
    • +

      P3.02c-024 - Detection of Novel Activating FGFR Rearrangements, Truncations, and Splice Site Alterations in NSCLC by Comprehensive Genomic Profiling (ID 4905)

      14:30 - 15:45  |  Author(s): J.W. Riess

      • Abstract

      Background:
      Activation of the fibroblast growth factor receptor (FGFR) family through mutation, amplification , C-terminal truncation, and 3’ fusion has been described in multiple cancer types, and FGFR inhibitors are currently being evaluated in the clinic. Though FGFR1 amplification has been defined in several datasets, other FGFR alterations in NSCLC are not well defined.

      Methods:
      Hybrid-capture based comprehensive genomic profiling (CGP) was performed on 13,898 consecutive FFPE lung cancer specimens (adeno 71%; squamous 12%) to a mean coverage depth of >650X for 236 or 315 cancer-related genes plus 47 introns from 19 genes frequently rearranged in cancer.

      Results:
      CGP of 13,898 NSCLCs led to the identification of 53 cases (0.4%) with FGFR1-4 rearrangements, truncations or splice site mutations resulting in an intact kinase domain (KD). The median age was 63 years old (range 36-83 years). Patients with these alterations were 60% (26/53) male, and 72% (31/43) with available data were stage IV. 26 patients (49%) had adenocarcinomas and 18 patients (34%) had squamous histology. FGFR alterations identified included 19 FGFR3-TACC3 fusions, one FGFR2-KIAA1598 fusion, and 7 novel fusions involving FGFR2, FGFR3 or FGFR4. We also identified 16 cases with C-terminal truncations resulting in loss of exon 18, but retention of the KD, 9 cases with mutations predicted to result in alternative splicing in the FGFR extracellular domain (exons 3 or 4), and one case with deletion of exons 3-6. Genomic analysis revealed concurrent FGFR amplification in 13% (7/53) of cases. Co-occurring alterations were observed in known drivers including EGFR, ERBB2, MET, and BRAF in 15% of (8/53) cases, and KRAS mutation in an additional 15% (8/53) of cases. The average tumor mutation burden in cases with these FGFR alterations was relatively high (mean 16.9 mutations/Mb, median 10.1 mutations/Mb, range 0.9-86.5 mutations/Mb) as compared to a mean of 9.2 mutations/Mb in NSCLCs. One patient with a novel FGFR2-LZTFL1 fusion had a partial response to the pan-FGFR inhibitor JNJ-42756493 and remained progression free for 11 months.

      Conclusion:
      Diverse FGFR alterations were detected using CGP in 0.4% of NSCLCs. Of the 53 cases identified, 37 (70%) were negative for other known driver alterations. In cases with co-occurring drivers, including two with EGFR exon 19 deletion, the possibility of an FGFR fusion arising in the setting of acquired resistance will be evaluated. One patient with a novel FGFR2 fusion had clinical benefit from an investigational FGFR inhibitor, suggesting that these alterations may predict response to targeted therapies.