Virtual Library

Start Your Search

D.A. Palma



Author of

  • +

    MS 10 - Management of Screening Detected Lung Cancer (ID 28)

    • Event: WCLC 2015
    • Type: Mini Symposium
    • Track: Treatment of Localized Disease - NSCLC
    • Presentations: 1
    • +

      MS10.06 - Is There a Role for SBRT in Screening Detected Non-Diagnosed Lung Nodules? (ID 1894)

      14:15 - 15:45  |  Author(s): D.A. Palma

      • Abstract
      • Presentation
      • Slides

      Abstract:
      With the results of the National Lung Screening Trial (NLST) demonstrating improved overall survival with low-dose CT screening in high-risk patients,[1] the management of screen-detected lung nodules has taken on increased clinical importance. In the NLST, low-dose CT scans showing any non-calcified mass or nodule were classified as ‘positive’, but with this definition, fewer than 4% of ‘positive’ results were ultimately shown to be lung cancer. Ongoing randomized trials of lung cancer screening use alternative definitions of a positive result, which may improve the specificity of CT screening. However, despite this high rate of false-positives, validated models are available to allow for accurate prediction of malignancy risk. One such model, developed from the Pan-Canadian Early Detection of Lung Cancer Study and validated, achieved excellent discrimination and calibration, with AUC values in excess of 0.90.[2 ]The availability of such tools should substantially reduce the risk of patients undergoing unnecessary investigations or treatments for benign disease. For patients with a high probability of malignancy, surgical resection has been the historic treatment of choice. Surgical interventions provide a pathologic diagnosis and also allow for lymph node sampling, but can be associated with significant morbidity and mortality. Although surgical morbidity in the NLST was low,[1] such results from specialized centers may not be widely generalizable. Population data have shown higher rates of complications than data from specialized centers, both in terms of complications for CT-guided biopsies, and also for surgical morbidity and mortality.[3,4] Stereotactic ablative radiotherapy (SABR), also called stereotactic body radiation therapy (SBRT), is a non-invasive treatment often delivered in 1-8 fractions on an outpatient basis. For T1-T2N0 NSCLC, SABR achieves high-rates of local control, and with results comparable to surgery in many well-controlled studies. Randomized data, not specific to screen-detected lesions, suggests that SABR may achieve better overall survival than surgical resection.[5] A major advantage of SABR appears to be a reduced risk of serious toxicity in high-risk patients: for example, a systematic review of outcomes for patients with T1-T2 NSCLC and severe COPD (GOLD III/IV) indicated a 30-day mortality rate of 10% with surgical resection and 0% with SABR.[6] Modeling studies comparing surgical resection and SABR suggest that as operative mortality rises, SABR is preferred. This presentation will discuss the relative merits and limitations in the use of SABR for screen-detected lung nodules, including evidence-based thresholds for treating without a definite pathologic diagnosis, issues pertaining to treatment delivery for small targets, toxicity of SABR for small lesions, and ongoing follow-up after SABR. References 1. National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011 Aug 4;365(5):395-409. 2. McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, Yasufuku K, Martel S, Laberge F, Gingras M, Atkar-Khattra S, Berg CD, Evans K, Finley R, Yee J, English J, Nasute P, Goffin J, Puksa S, Stewart L, Tsai S, Johnston MR, Manos D, Nicholas G, Goss GD, Seely JM, Amjadi K, Tremblay A, Burrowes P, MacEachern P, Bhatia R, Tsao MS, Lam S. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med. 2013 Sep 5 3. RS Wiener, LM Schwartz, S Woloshin, HG Welch. Population-based risk for complications after transthoracic needle lung biopsy of a pulmonary nodule: an analysis of discharge records. Ann Intern Med, 155 (2011), pp. 137–144 4. D LaPar, C Bhamidipati, C Lau, D Jones, B Kozower. The Society of Thoracic Surgeons General Thoracic Surgery Database: establishing generalisability to national lung cancer resection outcomes. Ann Thorac Surg, 94 (2012), pp. 216–221 5. Chang JY, Senan S, Paul MA, Mehran RJ, Louie AV, Balter P, Groen HJ, McRae SE, Widder J, Feng L, van den Borne BE, Munsell MF, Hurkmans C, Berry DA, van Werkhoven E, Kresl JJ, Dingemans AM, Dawood O, Haasbeek CJ, Carpenter LS, De Jaeger K, Komaki R, Slotman BJ, Smit EF, Roth JA. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol. 2015 Jun;16(6):630-7. 6. Palma D, Lagerwaard F, Rodrigues G, Haasbeek C, Senan S. Curative treatment of Stage I non-small-cell lung cancer in patients with severe COPD: stereotactic radiotherapy outcomes and systematic review. Int J Radiat Oncol Biol Phys. 2012 Mar 1;82(3):1149-56. 7. Louie AV, Rodrigues G, Hannouf M, Zaric GS, Palma DA, Cao JQ, Yaremko BP, Malthaner R, Mocanu JD. Stereotactic body radiotherapy versus surgery for medically operable Stage I non-small-cell lung cancer: a Markov model-based decision analysis. Int J Radiat Oncol Biol Phys. 2011 Nov 15;81(4):964-73

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.