Virtual Library

Start Your Search

L. Gregers



Author of

  • +

    P1.04 - Poster Session/ Biology, Pathology, and Molecular Testing (ID 233)

    • Event: WCLC 2015
    • Type: Poster
    • Track: Biology, Pathology, and Molecular Testing
    • Presentations: 1
    • +

      P1.04-060 - Pathways Involved in Lung Adenocarcinomas, - Integrated Analyses on Methylation and mRNA Data (ID 2699)

      09:30 - 17:00  |  Author(s): L. Gregers

      • Abstract
      • Slides

      Background:
      Lung cancer is one of the biggest cancer killers in the world. Despite certain recent advances, mortality is still high. Targeted therapy has increased the time to death for metastastic lung cancer, but such therapy is not available for all lung cancer patients. Targeted therapy is more often available for never smokers, due to presence of druggable driver mutations. In order to search for new putative targets of therapy, we seek to identify pathways involved different subgroups of patients and in patients with early relapse.

      Methods:
      A total of 190 patients undergoing surgery for lung cancer were included in the study (154 EGFR positive, 23 EGFR negative, 170 smokers and 20 non-smokers). Lung cancer tissue and clinical information was available for all patients and normal lung tissue was available for 30 of the patients. Whole genome expression array analysis (Agilent) was performed using mRNA isolated from all samples and DNA-methylation was analysed for 168 tumours and 21 matched normal lung tissue samples. R was used for statistical analyses; annHeatmap (from Heatplus) for hierarchical clustering, limma to identify differentially expressed genes, SPIA for pathway analysis and canonical correlation of methylation and mRNA-expression was performed with the CCA function from the PMA package. Pathways with an FDR<0.1 were considered significant. DAVID was used for gene ontology analysis.

      Results:
      Based on correlation of mRNA and methylation, different pathways were identified as predominant in specific subgroups of lung adenocarcinomas. Preliminary results indicate that genes involved in the KEGG-pathways cell cycle are more highly expressed in EGFR positive than in EGFR negative tumours in smokers. In the EGFR-negative tumours, several pathways are up-regulated: Oocyte meiosis, progesterone-mediated oocyte maturation, HTLV-1 infection, p53 signalling pathway and small cell lung cancer. For non-smoking patients, four pathways were up-regulated in EGFR-positive tumours: ECM-receptor interaction, TGF-beta signalling pathway, bile secretion and cocaine addiction. There were no pathways up-regulated in EGFR-negative compared with EGFR-positive never-smokers. This may partly be due to small numbers. Similarly, pathways dominating the tumours of patients with early relapse will be identified. Genes whose expression and methylation status were correlated were identified within smokers and non-smokers separately.

      Conclusion:
      Based on correlation between mRNA and methylation, specific pathways were identified activated in subgroups of lung adenocarcinomas. There are significant differences between ever-smokers and never-smokers. Survival analyses are ongoing.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.