Virtual Library

Start Your Search

R.M. Jotte



Author of

  • +

    MO18 - NSCLC - Targeted Therapies IV (ID 116)

    • Event: WCLC 2013
    • Type: Mini Oral Abstract Session
    • Track: Medical Oncology
    • Presentations: 1
    • +

      MO18.11 - Oral MEK1/MEK2 inhibitor trametinib (GSK1120212) in combination with docetaxel in a phase 1/1B trial involving <em>KRAS</em>-mutant and wild-type (WT) advanced non-small cell lung cancer (NSCLC): efficacy and biomarker results (ID 2411)

      16:15 - 17:45  |  Author(s): R.M. Jotte

      • Abstract
      • Presentation
      • Slides

      Background
      KRAS is the most frequently mutated oncogene in NSCLC and represents an unmet need for targeted therapy. Trametinib enhances docetaxel-induced growth inhibition and apoptosis of NSCLC cell lines. Cell lines with the KRAS G12C point mutation, the most common KRAS mutation subtype (≈50% of KRAS-mutant NSCLC or ≈10% of all NSCLC), are more responsive to apoptosis induced by this combination.

      Methods
      This 2-part, multi-arm, open-label phase 1/1B study evaluated the safety and efficacy of trametinib plus chemotherapy (NCT01192165). Part 1 determined the recommended phase 2 dose (RP2D) for trametinib (2.0 mg daily) and docetaxel (75 mg/m[2] every 3 weeks) in the presence of growth factors in patients with advanced solid tumors. In part 2, patients with NSCLC were stratified as KRAS WT or KRAS-mutant and treated at the RP2D. Primary study objectives were safety and tolerability; secondary objectives were efficacy and pharmacokinetics (PK). Next-generation sequencing was used to perform exploratory mutational profiling on available archival tissue from 17 patients (36%). Plasma from 42 patients (89%) was analyzed both for tumor-derived mutations in cell-free DNA (eg, KRAS, EGFR) using BEAMing technology as well as cytokine and angiogenic factors using a Searchlight multiplex assay.

      Results
      A total of 47 patients with NSCLC (22 KRAS WT [64% ≥2 prior therapies; 27% squamous] and 25 KRAS-mutant [40% ≥2 prior therapies; 0% squamous]) were enrolled and treated at the RP2D until disease progression or unacceptable toxicity. Safety and PK data were previously reported (ASCO 2013). Progression-free survival (PFS) was 4.2 months for all patients; efficacy results according to mutation status are shown in Table 1. Among KRAS-mutant patients, activity and efficacy were better in G12C compared with non-G12C subtypes. Among KRAS WT, activity was seen in cancers with EGFR mutations; clinical benefit was noted in 2 patients with ALK translocation (disease control 25 weeks and 60+ weeks). Final biomarker analyses, including assessment of their potential correlation with therapeutic response or resistance, are ongoing and will be reported upon completion. Figure 1

      Conclusion
      MEK inhibition with trametinib + docetaxel (+ growth factors) demonstrated activity in both KRAS-mutant and WT NSCLC; efficacy data are encouraging and warrant further study. Cancers carrying the KRAS G12C point mutation may have improved activity and efficacy compared with non-G12C subtypes, consistent with preclinical observations. Additionally, clinical benefit with this combination was broad and was seen in patients with squamous histology and those with EGFR mutation or ALK translocation.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.