Virtual Library

Start Your Search

N. n/a

Moderator of

  • +

    MTE15 - Surgery for Complications of Surgery (ID 59)

    • Event: WCLC 2013
    • Type: Meet the Expert (ticketed session)
    • Track: Surgery
    • Presentations: 1
    • +

      MTE15.1 - Surgery for Complications of Surgery (ID 608)

      07:00 - 08:00  |  Author(s): Y.T. Kim

      • Abstract
      • Presentation

      Abstract
      Although recent development of minimally invasive procedures contributed significantly to reduce of postoperative complications, as the population continues to age, as more patients receive induction therapies, and as more patients are immunocompromised, complications will continue to increase. Although many complications can be treated medically, some complications require another round of surgery. Postoperative complications after lung cancer surgery can take place both in early and late postoperative periods. As a matter of fact, major surgical errors during the surgery can result in mortality or major morbidity. Hence, the surgery for complications of surgery should begin with prevention of the intraoperative event during the initial surgery. Intraoperative complications During the major lung resection, various kinds of errors can take place. Poor surgical technique can cause injuries of the pulmonary vasculature as well as of the bronchus. The risk of intraoperative technical complication can occur either during VATS or thoracotomy procedures. However, it is more difficult to control in VATS. Minor bleeding can be easily controlled trough VATS. However, once a major vascular injury occurs, the bleeding focus should be compressed, and a prompt thoracotomy should be made. Any bronchial injuries should be detected during the surgery and appropriately fixed. Bleeding can also occur from the pulmonary parenchyma, especially after wedge resection in patients whose pulmonary arterial pressure is increased. For such patients, the staple lines should be oversewed meticulously as the elevated pulmonary arterial pressure may cause postoperative bleeding. Sometimes, lack of understanding of variations of intrathoracic anatomy can cause serious complications. Such structural variations should be acknowledged preoperatively by carefully reviewing the CT scans. According to a report from a dedicated thoracic surgical center, the catastrophic complications took place in 1% of patients, including main pulmonary arterial and main pulmonary venous transection requiring reanastomosis, unplanned pneumonectomies, unplanned bilobectomy, tracheoesophageal fistula, membranous airway injury to the bronchus intermedius, complete staple line disruption of the inferior pulmonary vein, injury to the azygos/superior vena cava junction, and splenectomy. The third and perhaps the most important cause of intraoperative complication is negligence. Thus, establishment of standardized surgical protocol is mandatory in training hospital. Postoperative complications Common postoperative complications such as prolonged air leak, atrial fibrillation, aspiration and pneumonia can be treated by medical methods. The early postoperative course is often compromised by chylothorax. The initial treatment is to give nothing by mouth and wait until the chest tube drainage decreases. However, if the chylothorax persists, reoperation with duct ligation should be considered. Empyema is an uncommon complication after pulmonary resection. The key treatment principle is control of the pleural space, which can be established by lung expansion. If there is any question of a BPF, repeat thoracotomy with muscle or omental harvesting is mandatory to drain the empyema and to decorticate the lung, and to buttress the open bronchus. Superficial wound infections are managed with antibiotics, drainage, and local wound care. Management options of deep sternal infection include sternal debridement or sternectomy, prolonged open wound care or irrigation, muscle flap reconstruction, or some combination of these. Postpneumonectomy bronchopleural fistula (BPF) is difficult-to-manage. Management is determined by the timing of complication, the condition of the patient, and the presence or absence of empyema. Patients should be positioned with their operated side down. Chest tube drainage of the empyema should be performed. For repair of the bronchus, a long stump can be resected and closed primarily if the BPF took place in the early postoperative period. In some cases, primary closure of postpneumonectomy BPF may not be tenable. In such situations, the bronchial leak point can be closed with a vascularized flap. Sterile or minimally contaminated cavities can be irrigated, filled with antibiotic solution, and then closed. Eloesser flaps are ideal for long-term open drainage and irrigation. Alternatively, after the pleural cavity is granulating and healthy, it can be filled with antibiotic solution and closed. Rarely, BPFs have been managed nonoperatively with endoscopic techniques combined with antibiotics. Residual space after lobectomy can also occur. Intraoperative maneuvers to lessen the risk for space problems include pleural tents, phrenic nerve crush, muscle or omental transposition, thoracoplasty, and pneumoperitoneum. If a patient is clinically well, continued observation and antibiotics are appropriate while the space fills. Lobar torsion is one of the most serious complications and commonly affects the right middle lobe after right upper lobectomy. Visual confirmation of anatomic position and proper lung inflation allows detection of twisted or ischemic lung before closure. The lung may be salvageable if the torsion is recognized early, before infarction occurs. However, usually the diagnosis is late, and resection is required. Postpneumonectomy syndrome is caused by displacement and rotation of the mediastinum into the operated chest. The remaining main stem bronchus is stretched and compressed over the spine or aorta. Surgical treatment principle is to reposition the mediastinum by placing intrathoracic prosthetic implants, which will relieve the airway compromise. Sleeve lobectomy or other bronchoplastic procedures may result in late airway stenosis. Repeated dilations sometimes stabilize strictures but usually the effect is temporarily. In some cases, reoperation is necessary. If the stenosis resulted from kinking of the anastomosis, resection and re-anastomosis may fix the problem. Usually, a completion pneumonectomy may be necessary. A fistula between the airway and pulmonary artery occur after bronchoplasty or tracheal resection. If a fistula is apparent, emergency surgery should be performed. The mortality rate of bronchovascular fistulas is high. Tracheoesophageal fistula can develop with prolonged intubation and mechanical ventilation. Surgical repair should be attempted after the patient's condition is optimized, and the patient is breathing spontaneously. Chest wall graft infection can happen even several years after chest wall resection and reconstruction. When chronic, often times, soft tissue flap support may be sufficient to obviate skeletal reconstruction. Conclusions An appropriate patient selection and meticulous surgery are the best prophylaxis against postoperative surgical complications. When complications arise, they require an experienced surgeon for identification and correction. Furthermore, training of surgical techniques, sound knowledge of anatomical variations, as well as stringent observances of surgical principle are mandatory to overcome intraoperative complications.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.