Virtual Library

Start Your Search

J.W. Welsh



Author of

  • +

    O02 - NSCLC - Combined Modality Therapy I (ID 111)

    • Event: WCLC 2013
    • Type: Oral Abstract Session
    • Track: Combined Modality
    • Presentations: 1
    • +

      O02.03 - Value of Adding Erlotinib to Thoracic Radiation Therapy with Chemotherapy for Stage III Non-Small Cell Lung Cancer: A Prospective Phase II Study (ID 2436)

      10:30 - 12:00  |  Author(s): J.W. Welsh

      • Abstract
      • Presentation
      • Slides

      Background
      The molecular basis for radiation resistance seems to involve an enhanced survival response with increased capacity for DNA repair and suppressed apoptosis. Both properties are controlled in part by upstream signal transduction pathways triggered by activation of the epidermal growth factor receptor (EGFR). Hypothesizing that the response of non-small cell lung cancer (NSCLC) to current standard chemoradiotherapy can be improved through the addition of therapy targeted to the epidermal growth factor receptor (EGFR), we undertook a single-institution phase II trial to test whether adding the EGFR tyrosine kinase inhibitor (TKI) erlotinib to concurrent chemoradiation therapy for previously untreated, locally advanced, inoperable NSCLC would improve survival and response rates without increasing toxicity.

      Methods
      Forty-eight patients with previously untreated NSCLC received radiation (63 Gy/35 fractions) on Monday‒Friday, with chemotherapy (paclitaxel 45 mg/m², carboplatin AUC=2) given every Monday and erlotinib (150 mg orally 1/d) Tuesday–Sunday for 7 weeks, followed by two cycles of consolidation paclitaxel-carboplatin. The primary endpoint was time to progression; secondary endpoints were toxicity; response, overall survival (OS), and disease control rates; and whether any endpoint differed by EGFR mutation status.

      Results
      Of 46 patients (96%) evaluable for response, 40 were former or never smokers; 23 had adenocarcinoma; and 41 were evaluable for EGFR mutations (37 wild-type [wt] and 4 mutations [all adenocarcinomas]). Median time to progression was 14.5 months and did not differ according to EGFR status. Toxicity was acceptable (no grade 5, one grade 4, and eleven grade 3). Fourteen patients (31%) had complete responses (3 mutations and 11 wt), 24 (52%) partial (20 wt and 4 unknown EGFR mutation status), and 8 (18%) had stable or progressive disease (6 wt, 1 mutation and 1 unknown EGFR mutation status); 3 patients with mutations (75%) had complete response vs. 11 wt (30%) (p=0.07 for EGFR mutation vs wt groups). For alive patients, the median follow-up was 44.7 months’ follow-up (range, 29.3–54.6 months). OS rates were 82.6% at 1 year, 67.4% at 2 years, 48.5% at 3 years, and 32.2% at 4 years and did not differ by mutation status (wt vs mutation, p=0.17). For all patients the median follow-up was 30.6 months’ follow-up (range, 3.4–54.6 months). 14 patients were free from progression and 32 had local failure, distant failure, or both. Eleven of the 27 distant failures were in the brain (7 wt, 3 mutation, 1 unknown; P=0.04); the local control rate was 75% among the 4 patients with EGFR mutations. Median time to progression was 13.6 months (95% confidence interval 10.2-20) and did not differ by EGFR status (wt vs mutation p=0.39).

      Conclusion
      Overall survival was promising, but time to progression was disappointing. Toxicity was acceptable. The prevalence of distant failures underscores the need for more effective systemic therapy, perhaps including maintenance EGFR-TKI for patients with mutated EGFR.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P3.08 - Poster Session 3 - Radiotherapy (ID 199)

    • Event: WCLC 2013
    • Type: Poster Session
    • Track: Radiation Oncology + Radiotherapy
    • Presentations: 1
    • +

      P3.08-011 - Stereotactic Ablative Radiotherapy: A Potentially Curable Approach to Multiple Primary Lung Cancer (ID 1454)

      09:30 - 16:30  |  Author(s): J.W. Welsh

      • Abstract

      Background
      Lung parenchymal recurrent or multiple lobe cancer is typically considered to have metastatic disease and treated with palliative approach such as chemotherapy. However, some of these patients may have multiple primary lung cancer (MPLC) that could be potential curable. Surgical resection has been the standard treatment for early-stage multiple primary lung cancer (MPLC). However, a significant proportion of patients with MPLC cannot undergo surgery. We explored here the role of stereotactic ablative radiotherapy (SABR) for patients with MPLC.

      Methods
      We reviewed MPLC cases treated with SABR (50 Gy in 4 fractions) for the second tumor. Four-dimensional CT–based planning/volumetric image-guided treatment was used for all patients. Patients underwent chest CT scanning every 3 months for 2 years after the SABR and then every 6 months for another 3 years. PET scans were recommended at 3–12 months after SABR. Toxic effects were scored according to the National Cancer Institute Common Terminology Criteria for Adverse Effects version 4.

      Results
      For the 101 patients treated with SABR, at a median follow-up interval of 36 months and median overall survival of 46 months, 2-year and 4-year in-field local control rates were 97.4% and 95.7%. 2- and 4-year rates of overall survival (OS) were 73.2% and 47.5% and progression-free survival (PFS) were 67.0% and 58.0%. Patients with metachronous tumors had higher OS and PFS than did patients with synchronous tumors (2-year OS 80.6% metachronous vs. 61.5% synchronous; 4-year OS 52.7% vs. 39.7%; p=0.047; 2-year PFS 84.7% vs. 49.4%; 4-year PFS 75.6% vs. 30.4%; p=0.0001). For patients whose tumors were both of the same histology (meaning that the second lesion could have been a satellite, a metastasis, or a recurrent lesion), the 2-year and 4-year OS rates were 76.4% and 51.2%, which were no different from the OS rates for patients with tumors of different pathology (2-year OS: 66.7% and 4-year OS: 40.5%; p=0.406). The 2- and 4-year OS of patients in whom both tumors were classified as stage I were 76.1% and 55.2%, which was better than the OS rates for the patients whose index tumors were of higher stage (2-year OS 66.7%, 4-year OS 26.6%; p=0.049). For patients whose index tumor was treated with surgery or SABR, the incidence of grade ≥3 radiation pneumonitis was 3% (2/71), but this increased to 17% (5/30) for patients whose index tumor was treated with conventional radiotherapy. Other grade ≥3 toxicities included grade 3 chest wall pain (3/101, 3%) and grade 3 skin toxicity (1/101, 1%).

      Conclusion
      1. SABR achieves an excellent long-term tumor control and promising PFS and OS in early-stage MPLC. 2. Toxicity could happen but within the scope of SABR in stage I disease. 3. Caution should be taken integrating SABR with prior conventional radiotherapy for stage II/III disease. SABR could be an effective alternative to surgery for curative treatment of early-stage MPLC tumors.