Virtual Library

Start Your Search

D. Gomez



Author of

  • +

    MO14 - Mesothelioma II - Surgery and Multimodality (ID 121)

    • Event: WCLC 2013
    • Type: Mini Oral Abstract Session
    • Track: Mesothelioma
    • Presentations: 1
    • +

      MO14.11 - Safety of hemithoracic pleural intensity-modulated radiation therapy (IMRT) for malignant pleural mesothelioma (MPM) in the multimodality setting: interim analysis of a phase II study. (ID 2802)

      10:30 - 12:00  |  Author(s): D. Gomez

      • Abstract
      • Presentation
      • Slides

      Background
      Pleurectomy/decortication (P/D) is increasingly used for the surgical management of MPM. The presence of the remaining ipsilateral lung poses a challenge when delivering adjuvant radiation therapy, as the risk for radiation pneumonitis (RP) is high. We developed an IMRT technique targeting the entire pleura of the involved hemithorax, with promising early results. Here, we present the interim results of a prospective phase II study to determine the safety and toxicity profile of pleural IMRT following induction chemotherapy and P/D.

      Methods
      Twenty-nine patients with locally advanced MPM have been enrolled to date. All patients received up to four cycles of pemetrexed/platinum chemotherapy. P/D was performed for all resectable patients. Sequential hemithoracic pleural IMRT was then administered with the intent of achieving a total planned dose of 50.4Gy in 28 fractions, as previously described (Rosenzweig et al., IJROBP 2012). All patients were simulated with a 4D-CT scan. A PET scan for image fusion and radiation planning was available for all patients. A Simon two-stage design was applied. A safety analysis after the first 9 patients led to the identification of only one case with ≥grade 3 RP in the first 3 months. The cohort was therefore expanded to 28 evaluable patients, defined as having initiated RT. The primary endpoint is the incidence of ≥grade 3 RP defined per Common Terminology Criteria for Adverse Events, v4.0. Steroids are typically initiated for ≥grade 2 RP.

      Results
      To date, 21 out of 29 patients total are evaluable. The median follow-up is 10 months. The median age at diagnosis is 66 years (range 38-79). Median KPS was 90% (range 70-90%). Three patients had sarcomatoid, 3 had biphasic and 23 had epithelioid MPM. All patients received chemotherapy. Eight patients (28%) had a partial response, nine patients (38%) progressed, and all others had stable disease. Twenty-four patients (83%) underwent surgical exploration. Five patients underwent an extended P/D or P/D, 11 had a partial P/D, and 8 were found to be unresectable. Eight patients were removed from the study prior to receiving IMRT (7 due to disease progression and 1 due to grade 4 pulmonary embolism after one cycle of chemotherapy). To date, nineteen patients have completed IMRT [median dose 4680cGy (range 4500 to 5040cGy)]; one patient had distant disease progression after 16 fractions; one patient is currently on treatment. Five patients experienced grade 2 RP that was successfully controlled with steroids. One patient experienced grade 3 RP requiring supplemental oxygen, but quickly improved after steroid initiation. Other commonly observed ≥grade 2 radiation-related toxicities included fatigue (37%), dyspnea (47%), nausea (42%), esophagitis (26%), and cough (11%). No grade 4 or 5 radiation-related toxicities were observed.

      Conclusion
      Hemithoracic pleural IMRT appears to have an acceptable toxicity profile in this ongoing phase II study. Early intervention with steroids is effective in controlling RP. This novel radiation technique has great promise as a component of lung-sparing multi-modality therapy in locally advanced MPM.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MO17 - Radiotherapy I: Stereotactic Ablative Body Radiotherapy (ID 106)

    • Event: WCLC 2013
    • Type: Mini Oral Abstract Session
    • Track: Radiation Oncology + Radiotherapy
    • Presentations: 1
    • +

      MO17.11 - Stereotactic ablative radiotherapy (SABR) for centrally located early-stage or isolated parenchymal recurrences of non-small cell lung cancer (NSCLC): How to fly in a "no fly zone" (ID 1961)

      16:15 - 17:45  |  Author(s): D. Gomez

      • Abstract
      • Presentation
      • Slides

      Background
      SABR has become a standard treatment option for medically inoperable, peripherally located early-stage NSCLC. However, using SABR for centrally located lesions remains challenging because of the potential for severe side effects. Here we sought to validate our previous experience with SABR (50 Gy in 4 fractions) for central lesions, including the dose-volume constraints, and explore a new regimen of 70 Gy in 10 fractions for cases in which dose-volume constraints cannot be met with the previous regimen.

      Methods
      We used 4D-based, volumetric image-guided SABR to treat 101 patients with biopsy-proven and PET/CT-staged centrally located (within 2 cm of bronchial tree, trachea, major vessels, esophagus, heart, pericardium, brachial plexus or vertebral body) T1-2N0M0 tumors (n=82) or isolated lung-parenchyma recurrent lesions (n=19). The treatment period spanned February 2005 through May 2011; follow-up visits (every 3 months for 2 years and every 6 months for the next 3 years) included chest CT or PET/CT. Endpoints were toxicity (CTCAE v3.0), survival, local control, regional control, and distant metastasis.

      Results
      At a median follow-up time of 30.3 months for all patients (40.5 months for those alive), median overall survival time was 56.5 months and 5-year overall survival rate was 49.0%. Three-year actuarial local, regional, and distant control rates were 96.5%, 87.2% and 77.3%. The most common toxicities were chest-wall pain (18% grade 1 and 13% grade 2) and radiation pneumonitis (10.9% grade 2 and 1.9% grade 3). No patient experienced grade 4 toxicity and one patient with tumor invading bronchial tree who received 70 Gy in 10 fractions died from hemoptysis 13 months after SABR. The distance between tumor and chest was associated with chest wall pain (≤1 cm 45% vs >1 cm 17%, p=0.002). Univariate and multivariate analyses showed that for the 82 patients receiving 50 Gy in 4 fractions, mean total lung dose (MLD) >5 Gy or ipsilateral lung V~20~ (iV~20~) >16% were independent predictors of radiation pneumonitis; 3 of 9 patients in that group with D~max~ to brachial plexus >35 Gy experienced brachial neuropathy versus none of the 73 patients with brachial D~max~ ≤ 35 Gy (p=0.001).

      Conclusion
      SABR for centrally located lesions produces clinical outcomes similar to those for peripheral lesions when normal tissue constraints are respected. For 50 Gy in 4 fractions, we recommend MLD ≤5 Gy, lung iV~20~ ≤16%; bronchial tree D~max~ ≤ 38 Gy, V~35~ ≤1 cm[3]; major vessel D~max~≤ 56 Gy, V~40~≤1 cm[3]; esophageal D~max~ ≤35 Gy, V~30~≤1 cm[3 ]; brachial plexus D~max~ ≤35 Gy, V~30~≤0.2 cm[3] and spinal cord D~max~ <25 Gy. Giving 70 Gy in 10 fractions is another option for challenging cases but can produce severe toxicity if significant amounts of critical structures are exposed to ≥70 Gy. Proper selection of cases (based on tumor location and normal tissue constraints) and SABR regimens and volumetric image-guided delivery are all crucial to avoid overdosing critical structures. Typically, a minimum 5-10 mm distance between critical structures and gross tumor is required to meet dose-volume constraints.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P1.11 - Poster Session 1 - NSCLC Novel Therapies (ID 208)

    • Event: WCLC 2013
    • Type: Poster Session
    • Track: Medical Oncology
    • Presentations: 1
    • +

      P1.11-010 - Physical Targeting of Locally Advanced Non-Small Cell Lung Cancer (NSCLC): Proton Therapy (ID 1020)

      09:30 - 16:30  |  Author(s): D. Gomez

      • Abstract

      Background
      Radiation therapy is a critical element in the potentially curative treatment of locally advanced NSCLC. Important developments have permitted more precise and effective physical targeting with radiations, an important complement to molecular targeting with drugs. Proton beam therapy (PBT) represents the most advanced physical targeting available thus far. A review of our experiences with proton therapy for NSCLC may serve as a benchmark for technically advanced radiation therapy.

      Methods
      Patients were enrolled on a protocol to investigate normal tissue effects of proton therapy between 2006 and December, 2010. Patients were excluded if they did not received concurrent chemotherapy, were treated on a phase II study of high dose PBT (JY Chang, PI) or were part of a randomized trial of PBT vs. intensity modulated radiation therapy (IMRT) (Z Liao, PI). They were evaluated before treatment with positron emission tomography (PET) and contrast enhanced computed tomography (CT), studies that were also used for planning treatment. Consultation with thoracic surgeons assured they were not candidates for resection. The mediastinal lymph nodes stations were evaluated with mediastinoscopy and/or fiberoptic bronchoscopy with ultrasound. Treatment planning consistently included motion management with 4D CT simulation and creation of an internal target volume (ITV). Patients were assessed for failure patterns and survival as well as normal tissue effects. Kaplan Meier estimates and Cox regression analysis were used to calculate survival outcomes.

      Results
      Of the 178 patients enrolled, the median age at diagnosis was 69 yrs (range 37.8 yrs to 94.9 yrs). KPS ranged from 60 to 100, median 80. 43% of patients had squamous carcinoma, and 57% had non-squamous histology. Stage distribution was 15% stage II, 65% III, 5% IV, 15% postoperative recurrence. The median tumor volume was 59 cc (range 4-753 cc) and the median total tumor dose was 74 Gy(RBE). Median follow-up time for living patients was 34.6 mos. Median survival was 32.7 mos. Three year survival rate was 46.5% (49.8% for squamous, 42.1% for non-squamous. Local failure at 3 years was 36.4% for squamous and 48.9% for non-squamous tumors. Distant metastasis-free survival at 3 years was 44.5% for squamous and 55.8% for non-squamous cell histology. Multivariate analysis found age, squamous histology and tumor size adversely affected survival.

      Conclusion
      Prognostic factors with PBT and concurrent chemotherapy are similar to those seen in series of patients treated with x-irradiation. Favorable median and 3 year survival rates with this relatively large data set suggest superior outcomes with PBT and quite possibly a new platform for physical targeting upon which to build chemical and molecular targeting strategies.

  • +

    P3.08 - Poster Session 3 - Radiotherapy (ID 199)

    • Event: WCLC 2013
    • Type: Poster Session
    • Track: Radiation Oncology + Radiotherapy
    • Presentations: 1
    • +

      P3.08-011 - Stereotactic Ablative Radiotherapy: A Potentially Curable Approach to Multiple Primary Lung Cancer (ID 1454)

      09:30 - 16:30  |  Author(s): D. Gomez

      • Abstract

      Background
      Lung parenchymal recurrent or multiple lobe cancer is typically considered to have metastatic disease and treated with palliative approach such as chemotherapy. However, some of these patients may have multiple primary lung cancer (MPLC) that could be potential curable. Surgical resection has been the standard treatment for early-stage multiple primary lung cancer (MPLC). However, a significant proportion of patients with MPLC cannot undergo surgery. We explored here the role of stereotactic ablative radiotherapy (SABR) for patients with MPLC.

      Methods
      We reviewed MPLC cases treated with SABR (50 Gy in 4 fractions) for the second tumor. Four-dimensional CT–based planning/volumetric image-guided treatment was used for all patients. Patients underwent chest CT scanning every 3 months for 2 years after the SABR and then every 6 months for another 3 years. PET scans were recommended at 3–12 months after SABR. Toxic effects were scored according to the National Cancer Institute Common Terminology Criteria for Adverse Effects version 4.

      Results
      For the 101 patients treated with SABR, at a median follow-up interval of 36 months and median overall survival of 46 months, 2-year and 4-year in-field local control rates were 97.4% and 95.7%. 2- and 4-year rates of overall survival (OS) were 73.2% and 47.5% and progression-free survival (PFS) were 67.0% and 58.0%. Patients with metachronous tumors had higher OS and PFS than did patients with synchronous tumors (2-year OS 80.6% metachronous vs. 61.5% synchronous; 4-year OS 52.7% vs. 39.7%; p=0.047; 2-year PFS 84.7% vs. 49.4%; 4-year PFS 75.6% vs. 30.4%; p=0.0001). For patients whose tumors were both of the same histology (meaning that the second lesion could have been a satellite, a metastasis, or a recurrent lesion), the 2-year and 4-year OS rates were 76.4% and 51.2%, which were no different from the OS rates for patients with tumors of different pathology (2-year OS: 66.7% and 4-year OS: 40.5%; p=0.406). The 2- and 4-year OS of patients in whom both tumors were classified as stage I were 76.1% and 55.2%, which was better than the OS rates for the patients whose index tumors were of higher stage (2-year OS 66.7%, 4-year OS 26.6%; p=0.049). For patients whose index tumor was treated with surgery or SABR, the incidence of grade ≥3 radiation pneumonitis was 3% (2/71), but this increased to 17% (5/30) for patients whose index tumor was treated with conventional radiotherapy. Other grade ≥3 toxicities included grade 3 chest wall pain (3/101, 3%) and grade 3 skin toxicity (1/101, 1%).

      Conclusion
      1. SABR achieves an excellent long-term tumor control and promising PFS and OS in early-stage MPLC. 2. Toxicity could happen but within the scope of SABR in stage I disease. 3. Caution should be taken integrating SABR with prior conventional radiotherapy for stage II/III disease. SABR could be an effective alternative to surgery for curative treatment of early-stage MPLC tumors.