Virtual Library

Start Your Search

M. Varella-Garcia



Author of

  • +

    MO10 - Molecular Pathology II (ID 127)

    • Event: WCLC 2013
    • Type: Mini Oral Abstract Session
    • Track: Pathology
    • Presentations: 2
    • +

      MO10.10 - Detection of RET fusions by FISH in unselected NSCLC (ID 2434)

      16:15 - 17:45  |  Author(s): M. Varella-Garcia

      • Abstract
      • Presentation
      • Slides

      Background
      Activation of the RET gene by fusion has been described in 1-2% of unselected population of non-small-cell lung cancer (NSCLC) and there is early evidence suggesting that patients with RET activated tumors obtain clinical benefit from RET inhibitors. The major fusion partner is KIF5B, but CCDC6, NCOA4 and TRIM33 have also been reported. The prevalence of RET fusions in different lung cancer subtypes and clinicopathologic characteristics of remain unclear. In this study, we sought to identify RET rearrangements in NSCLC using FISH and to investigate the association with histology and clinical features.

      Methods
      A 3-target, 3-color FISH probe set [3’RET in red, 5’RET in green, 5’KIF5B in yellow] was developed to simultaneously detect (a) disruption between 3’ and 5’ RET and (b) specific fusion between 5’KIF5B-3’RET. This probe set was used to interrogate a cohort of Caucasian NSCLC patients using tumor microarray. Inclusion of specimens on the tissue microarray was independent of gender, age, smoking history, histology and any known molecular profile and was only based on patient informed consent and tissue availability.

      Results
      Among 348 evaluable NSCLC patients, 6 (1.7%) were found to be positive for RET rearrangement (RET+): 2 showed typical KIF5B:RET pattern, 2 showed patterns consistent with CCDC6: RET fusion; and 2 had split 3’-5’ without suggestion of the fusion partner identity. The histology was adenocarcinoma in 4, large cell carcinoma in 1 and squamous cell carcinoma in 1. All RET+ tumors were wild type for EGFR and negative for ALK and ROS1 rearrangements. The mean age of RET+ patients at the time of diagnosis was 62 years (49-74) and they were predominantly male (5) and former (4) or current smokers (1). The 10p11-q11 region displayed high level of genomic instability, with RET doublets, KIF5B and RET doublets, unbalanced KIF5B copy number gain, fusion KIF5B with 5’ and 3’RET, and abnormal separation between KIF5B and RET in 8.5%, 5.1%, 9.6%, 2.3%, and 2% of specimens, respectively. These atypical patterns will be further investigated by RT-PCR.

      Conclusion
      The customized 3-target, 3-color probe set successfully detected KIF5B:RET rearrangements and identified patterns suggestive of RET rearrangements with non-KIF5B partners in small subset of unselected NSCLC. Interestingly, only a minority of RET + patients were never smokers and 1/3 of them had non-adenocarcinoma histology. Despite the benefits of using enrichment strategies based on clinicopathologic variables for molecular testing of NSCLC in search for personalized therapy, these findings argue against using variables such as smoking status and histology for screening selection when the aim is to detect all potential RET+ patients.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MO10.12 - ROS1 Fusions Diagnosed by Break-Apart FISH in NSCLC (ID 968)

      16:15 - 17:45  |  Author(s): M. Varella-Garcia

      • Abstract
      • Presentation
      • Slides

      Background
      Chromosomal rearrangements which generate constitutively activated ROS1 receptor tyrosine kinase (6q22.1) have been found in several tumor types, including non-small cell lung cancers (NSCLC). In clinical trials, the oral kinase inhibitor crizotinib has shown promise in treating tumors with ROS1 rearrangements. Currently, fluorescence in situ hybridization (FISH) using dual-color, break-apart (BA) probes is used to detect ROS1 rearrangements in clinical samples; however, further optimization of this method is necessary to ensure patients are accurately diagnosed. This study explores BA FISH assay characteristics in NSCLC samples.

      Methods
      Tumor sections from 464 NSCLC patients were screened for ROS1 rearrangement using ROS1 BA FISH. Of these samples, 206 were co-screened for ALK rearrangement. The copy number of fused and isolated 3’/5’ signals, as well as the incidence of atypical patterns (doublet and clustered multiple fusions) was investigated. Cells were considered ROS1 positive (ROS1+) when ≥ 15% of nuclei displayed split 5’/3’ signals or single 3’ signals. Specific fusion transcripts in ROS1+ cases were identified by RT-PCR or inverse PCR.

      Results
      ROS1 rearrangements (ROS1+) were found in 21 patients (5%). The copy number of native ROS1 differed significantly between positive and negative tumors (mean of 1.5 versus 2.5, p<0.0001). The percent of cells with FISH patterns compatible with ROS1 rearrangement ranged from 30% to 100%, with a mean of 81%, in ROS1+ patients. The distribution of positive cells between scored regions within ROS1+ tumors was investigated for 13 cases and found to follow a normal distribution, ruling out intra-tumoral heterogeneity. Among ROS1+ specimens, 71% had a split signal pattern, 19% displayed a single 3’ pattern, and 10% had both a split and single 3’ pattern of positivity. For positive tumors, ROS1 fusion partners were identified as SDC4 (S2;R32 and S2;R34), EZR (E10;R34) and CD74 (C6;R32 and C6;R34). Atypical negative patterns such as fused doublets, clusters, 3’ doublets, 5’ doublets, and single 5’ signals were observed in 4%, 1%, 1%, <1%, and <1% of negative patients. ALK and ROS1 were scored simultaneously in the same cells in 206 patients, including 5 ROS1+ and 10 ALK+; no double positive cases were found. In ROS1 negative specimens, mean native ALK copy numbers were significantly higher than native ROS1 in ALK negative samples (3.2 versus 2.3, p<0.0001).

      Conclusion
      ROS1+ tumors were detected in 5% of patients in this large NSCLC cohort. Since these patients were subject to various selection strategies, this frequency cannot be transferred to an unselected NSCLC population. The low native ROS1 copy number in the rearranged cells and lack of evidence of intra-tumoral heterogeneity suggests ROS1 rearrangements occur early in tumorigenesis, consistent with their known oncogenic driver role. Data from this sample also show that, in FISH negative cases, ROS1 copy number was lower than native ALK. This suggests ROS1 may exist in a relatively more stable portion of the genome, potentially explaining why ROS1 rearrangements exist at a lower frequency than ALK rearrangements in NSCLC.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P1.02 - Poster Session 1 - Novel Cancer Genes and Pathways (ID 144)

    • Event: WCLC 2013
    • Type: Poster Session
    • Track: Biology
    • Presentations: 1
    • +

      P1.02-006 - Identification of targetable driver mutations in molecularly selected never smoker lung adenocarcinomas (ID 2970)

      09:30 - 16:30  |  Author(s): M. Varella-Garcia

      • Abstract

      Background
      Approximately 25% of lung cancers occur in lifelong never smokers. Although no dominant risk factor has been identified yet, the discover of molecular drivers potentially targetable with biological agents, makes lung cancer in never smokers a unique disease, candidate for a personalized therapy. Through the FISH test, we performed a screening for ALK, ROS1, and RET rearrangements, in a highly selected population of lung adenocarcinoma never smoker patients, previously demonstrated to be wild-type for EGFR and K-RAS mutations.

      Methods
      We collected archived histological material of 28 EGFR and K-RAS wild-type patients (pts), from a 200 never-smoker advanced lung adenocarcinomas database, to be analyzed for the presence of rearrangements in ALK, ROS1 and RET genes. All pts were treated at the Division of Medical Oncology of the S Maria della Misericordia Hospital in Perugia from October 2003 to February 2013. 20 specimens were included in a tissue microarray (TMA) analysis, whereas 8 were screened in separate subset, due to the scarce samples. FISH test was performed using a combination of commercial reagents and custom designed probes. Median overall survival (OS) of mutated pts compared to the pan-negative ones, was evaluated by Cox multivariate analysis.

      Results
      Clinicopathological characteristics: among the 28 patients, 27 were never smokers and 1 former light smoker, with a good performance status; 20 (72%) presented with a metastatic disease at diagnosis, 8 (28%) were locally advanced; median age was 56 years-old, with a predominance of female sex (18/28, 64%). All cases were invasive adenocarcinomas and classified into 18 (64%) solid predominant type, 1 (3.5%) mixed acinar/lepidic pattern, 1 (3.5%) papillary, no predominant subtype for 8 (28%) patients, because of unsufficient histological material available. Of the 28 never smoker cases, we identified 7 gene fusions (25%), including 2 pts ALK+ (7.1%), 3 pts ROS1+ (10.7%) and 2 RET+ cases (7.1%), one compatible with KIF5B:RET and other with CCDC6:RET fusion. Median OS for the entire cohort was 24.5 months (mo), 61.2 mo for mutated pts (any rearrangement) vs 24.1 mo for not-mutated, respectively (P = .292).

      Conclusion
      Molecularly selected never smoker lung adenorcinomas associates with a high incidence of driver genes mutations and further investigations to confirm our frequencies in larger cohorts are needed. In line with literature data, our findings suggest a different survival outcome among genotypes, and identification of specific subsets in this special population can lead to successful treatment with target therapies.

  • +

    PL03 - Presidential Symposium Including Top Rated Abstracts (ID 85)

    • Event: WCLC 2013
    • Type: Plenary Session
    • Track:
    • Presentations: 1
    • +

      PL03.07 - Treatment with Therapies Matched to Oncogenic Drivers Improves Survival in Patients with Lung Cancers: Results from The Lung Cancer Mutation Consortium (LCMC) (ID 2444)

      08:15 - 09:45  |  Author(s): M. Varella-Garcia

      • Abstract
      • Slides

      Background
      Detecting and targeting the oncogenic drivers EGFR and ALK have transformed the care of patients with lung adenocarcinomas. The LCMC was established to use multiplexed assays to test tumors for alterations in 10 genes and provide the results to clinicians to select treatments and clinical trials matched to the driver detected.

      Methods
      Fourteen LCMC sites enrolled patients with metastatic lung adenocarcinomas and tested their tumors in CLIA laboratories for activating mutations in 10 oncogenic driver genes.

      Results
      Tumors were tested from 1,007 patients for at least one gene and 733 for all 10 genes. An oncogenic driver was found in 466 (64%) of fully-genotyped cases. Among these 733 tumors, drivers found were: KRAS 182 (25%), sensitizing EGFR 122 (17%), ALK rearrangements 57 (8%), “other” EGFR 29 (4%), two genes 24 (3%), HER2 19 (3%), BRAF 16 (2%), PIK3CA 6 (1%), MET amplification 5 (1%), NRAS 5 (1%), MEK1 1 (<1%), AKT1 0. For cases with any genotyping, we used results to select a targeted therapy or trial in 275 (28%). Among 938 patients with follow-up, the median survivals were 3.5 years for the 264 with an oncogenic driver treated with genotype-directed therapy, 2.4 years for the 318 with an oncogenic driver with no genotype-directed therapy, and 2.1 years for the 360 with no driver identified (p<0.0001).

      Conclusion
      Individuals with lung cancers with oncogenic drivers receiving a corresponding targeted agent lived longer than similar patients who did not. An actionable driver was detected in 64% of tumors from patients with lung adenocarcinomas; more than one was present in 3%. Multiplexed testing aided physicians in choosing therapies and targeted trials in 28% of patients. This paradigm for care and research will expand as genotyping becomes more efficient with Next-Gen platforms, additional drivers are identified (i.e.ROS1 and RET), and more targeted drugs become available in the pharmacy and through clinical trials. Supported by HSS NIH NCI 1RC2CA148394-01. Trial Registered with Clinicaltrials.gov: NCT01014286.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.