Virtual Library

Start Your Search

M. Van Den Heuvel



Author of

  • +

    MA11 - Novel Approaches in SCLC and Neuroendocrine Tumors (ID 391)

    • Event: WCLC 2016
    • Type: Mini Oral Session
    • Track: SCLC/Neuroendocrine Tumors
    • Presentations: 1
    • +

      MA11.09 - Progastrin-Releasing Peptide (ProGRP) to Rule out Progressive Disease in Patients with Small Cell Lung Carcinoma (SCLC) (ID 4002)

      14:20 - 15:50  |  Author(s): M. Van Den Heuvel

      • Abstract
      • Presentation
      • Slides

      Background:
      For patients with SCLC, response to chemotherapy is monitored by computed tomography (CT) scans, which can be costly and inconvenient. A previous study showed that baseline levels (>100 pg/ml) of the tumor marker, ProGRP, were positively correlated with advanced SCLC, and a decline in ProGRP levels during treatment was associated with response.[1] However, the best approach to fully exploit ProGRP for monitoring treatment response is still unknown. The objective of this study was to determine if progression could be ruled out solely by combining the changes in ProGRP levels over two chemotherapy cycles.

      Methods:
      Patients with SCLC receiving first-line platinum-based doublet chemotherapy or a single-agent cytotoxic in any subsequent treatment line were included from six centers in Europe and China. Samples were collected prospectively and ProGRP levels were measured in serum or plasma samples using a fully automated ProGRP assay at baseline and after chemotherapy cycles 1 and 2. Only patients with blood samples taken at these time points and with elevated baseline ProGRP >100 pg/ml were eligible for this analysis. A logistic regression model was calculated to incorporate changes after the first cycle (i.e. from baseline to the end of cycle 1) and in between cycles (i.e. end of cycle 1 to the end of cycle 2). Progression was ascertained with CT scans. A non-progressor was defined as a patient with complete response, partial response, or stable disease, according to the RECIST v1.1 or WHO criteria. Progressors were patients with progressive disease only.

      Results:
      Overall, 123 patients (n=108 non-progressors, n=15 progressors) satisfied the eligibility criteria. Median age was 62.0 years (range 36.0–83.0), 56% were male, and 78% reported to be current or past smokers. In this population, a decline in ProGRP from both baseline to cycle 1 and from cycle 1 to cycle 2 was associated with non-progression (AUC 91.5%; 95% CI: 85.3−97.8; sensitivity 100%; specificity 71%). All patients who experienced a >25% relative decline in ProGRP levels after the first chemotherapy cycle, followed by any further decrease (>0%) after the second cycle, were found to be non-progressors.

      Conclusion:
      By measuring the change in ProGRP levels at baseline and after each of the two subsequent chemotherapy cycles, we were able to identify patients with non-progressive disease. This might reduce the need for interim CT scans. References 1. Muley, et al. Journal of Thoracic Oncology 2015; 10(9) Supplement 2:MINI27.13

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.