Virtual Library

Start Your Search

A. Mohn-Staudner

Moderator of

  • +

    MA11 - Novel Approaches in SCLC and Neuroendocrine Tumors (ID 391)

    • Event: WCLC 2016
    • Type: Mini Oral Session
    • Track: SCLC/Neuroendocrine Tumors
    • Presentations: 12
    • +

      MA11.01 - Molecular Profiling of Large Cell Neuroendocrine Carcinoma Using Capture-Based Targeted Sequencing (ID 4914)

      14:20 - 15:50  |  Author(s): Z. Zhou, L. Zhu, S. Lu, J. Zhang

      • Abstract
      • Presentation
      • Slides

      Background:
      Conventionally, the classification of lung cancer and many other malignancies is determined by the histology of a tumor. Large cell neuroendocrine carcinoma (LCNEC) is traditionally classified as a histological variant of large cell carcinoma (LCC), which is a subtype of non-small cell lung cancer (NSCLC). However, LCNEC exhibits differential cytological, morphological, clinical and biological features than those of classic LCC, thus rendering controversies regarding its classification. In 2015, with the integration of immunohistochemical analyses, the World Health Organization (WHO) has re-classified LCNEC under neuroendocrine tumors. Due to the rareness of LCNEC, few studies have been conducted on the molecular genetic profiling of LCNEC. In this study, we characterized molecular signature associated with a cohort of LCNEC, SCLC and LCC using capture-based targeted sequencing.

      Methods:
      We performed capture-based targeted sequencing on 30 surgically resected samples from patients with lung cancer using BurningRock Biotech’s OncoScreen Panel. This panel, consisting of all exons and critical introns of 295 genes, covering multiple classes of somatic mutations, including single nucleotide variation (SNVs), rearrangements, copy number variations (CNVs) and insertions and deletions (INDELs), can be used to detect genetic alterations both qualitatively and quantitatively. Among the 30 patients, 15 of them were diagnosed with LCNEC, 5 with LCC and 10 with small cell lung cancer (SCLC).

      Results:
      While no statistically significant difference was observed in total number of mutations among the three subtypes, LCC carries the most number of somatic mutations followed by LCNEC then SCLC. Overall, we identified 331 mutations with TP53 being the most frequently mutated gene in all three subtypes. Genes with recurrent somatic mutations detected in LCNEC, but not in LCC or SCLC include RUNX1, ERBB4, BRCA1, and EPHA3. Copy number analysis revealed a higher prevalence of CNV in LCNEC, with 60% of cases harboring such alteration. There is no common CNVs shared among all three subtypes. NFкBIA amplification is the only common CNV found in both LCNEC and LCC; and AKT2 amplification is shared by LCNEC and SCLC. Most CNVs are subtype-specific. Interestingly, one RET-fusion was discovered in one LCC sample and one EGFR exon 19 deletion accompanied by EGFR copy number amplification was discovered in one LCNEC sample.

      Conclusion:
      Targeted deep sequencing reveals distinct genetic profile for LCNEC compared to LCC and SCLC. LCNEC harbors more CNV and contains a panel of genes, including RUNX1, ERBB4, BRCA1 and EPHA3 that are more frequently mutated comparing to LCC and SCLC.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA11.02 - Mutational Burden in Pulmonary Neuroendocrine Tumors (puNETs) (ID 6099)

      14:20 - 15:50  |  Author(s): I. Sullivan, M. Kossai, G. Le Teuff, M. Deloger, N. Dorvault, L. Gianoncelli, V. De Montpreville, B. Job, M.V. Bluthgen, B. Besse, J. Soria, J. Adam, J. Scoazec, E. Baudin, D. Planchard

      • Abstract
      • Presentation
      • Slides

      Background:
      Tumor mutational load (TML) by whole-exome sequencing (WES) is a potential determinant of response to immune checkpoint blockers. The use of PD-L1 as a predictive biomarker for use of PD-1/PD-L1 inhibitors is limited. To date, there are few data concerning TML in puNETs.

      Methods:
      WES was performed in fresh-frozen tumor-normal pairs from 35 typical carcinoid (TC), 4 atypical carcinoid (AC) and 9 large-cell neuroendocrine carcinoma (LCNEC) consecutively collected. Exome enriched libraries were sequenced on an Illumina HiSeq 2000 with a paired-end 2 x 100 bp protocol. Reads were aligned to the reference hg19 using an implementation of the Burrows-Wheeler Aligner, and a BAM file was produced for each tumor and normal sample using the Picard pipeline. The MuTect algorithm was used to identify SSNVs in WES data. We used a minimal allelic fraction cutoff of 0.1. Patients' characteristics and TML were described (median and interquartile for quantitative variables and frequencies for qualitative variables). To evaluate the effect of some factors on the TML, an analysis of variance was used. A log transformation was performed according to the distribution of the TML. The median follow-up was estimated using the Schemper's method. The number of relapses and deaths was reported.

      Results:
      Cohort included 24 male and 24 female. Median age at diagnosis was 57 [Q1= 46; Q3= 70] years, 38% of carcinoids (TC+AC) and 89% of LCNEC were smokers, 26 (54%) stage I, 16 (34%) stage II, 3 (6%) stage III and 3 (6%) stage IV. All patients underwent surgery and 5 (10%) received neoadjuvant treatment. Median follow-up was 32.6 (min= 4.4; max= 179.9) months; there were 8 (17%) relapses (6/9 LCNEC, 2/39 carcinoids) and 10 deaths. On average, 11.6 Gb of sequence were produced per sample, aiming a mean coverage of 72X. Overall median TML was 0.31/Mb [Q1= 0.22; Q3= 0.67], significantly lower in carcinoids tumors than LCNEC (0.28 [Q1= 0.20; Q3= 0.38]/Mb vs. 2.98 [Q1= 1.20; Q3= 4.84]/Mb, respectively, p<0.0001). Similar findings were observed among smoker vs. non-smoker patients (0.28 [Q1= 0.18; Q3= 0.38]/Mb vs. 0.60 [Q1= 0.28; Q3= 2.98]/Mb, respectively, p=0.04). Both variables were found to be independently correlated with TML within the ANOVA test (p=0.0016).

      Conclusion:
      Our findings provide a unique portrait of puNETs, revealing different histotype mutational burden. Continued work in harnessing immunological data in puNETs are needed for better understanding immunotherapy-treatment option in this orphan disease.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA11.03 - INSM1 is a Novel Biomarker and a Crucial Regulator of the Neuroendocrine Differentiation Pathway in Neuroendocrine Tumours of the Lung (ID 5205)

      14:20 - 15:50  |  Author(s): F. Kosuke, K. Yasufuku, M. Suzuki, T. Ito

      • Abstract
      • Presentation
      • Slides

      Background:
      Insulinoma-associated protein 1 (INSM1) is expressed predominantly in embryonic developing neuroendocrine (NE) tissues, and the expression is significantly reduced/restricted in adult tissues. We previously revealed that INSM1 is expressed exclusively in small cell lung cancer (SCLC) compared to non-small cell lung cancer (NSCLC). The significance of the expression of INSM1 in lung cancer has been largely unknown. We investigated the utility of INSM1 as a novel immunohistochemical marker and researched the biological significance in lung cancer cell lines.

      Methods:
      We compared INSM1 as an immunohistochemical marker for NE tumours of the lung to conventional markers (chromogranin A (CGA), synaptophysin (SYP), and CD56). To elucidate the biological function of INSM1 in the NE differentiation pathway, we conducted INSM1 gene knockdown/overexpression experiments using human lung cancer cell lines.

      Results:
      INSM1 was expressed in 100% of SCLCs (44/44), Large cell neuroendocrine cell carcinomas (7/7), and Carcinoids (11/11), but was not expressed in NSCLCs (90 adenocarcinomas and 47 squamous cell carcinomas). This novel immnohistochemical marker showed high sensitivity and specificity when compared to conventional NE markers. We demonstrated that knockdown of INSM1 expression resulted in significant reduction of NE molecules in SCLC cell lines, and overexpression of INSM1 induced NE differentiation in NSCLC cell lines.

      Conclusion:
      INSM1 was a superior NE immunohistochemical marker when compared to conventional markers. Furthermore, our biological molecular experiments revealed that INSM1 is a critical upstream regulator of the NE differentiation pathway in SCLC cell lines. The elucidation of the significance of INSM1 expression in lung cancer strongly supports the diagnosis of NE tumours of the lung and promotes the understanding of the molecular biology of these tumours.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA11.04 - Discussant for MA11.01, MA11.02, MA11.03 (ID 7083)

      14:20 - 15:50  |  Author(s): J. Pujol

      • Abstract
      • Presentation
      • Slides

      Abstract not provided

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA11.05 - A Case-Control Study to Test the Use of ctDNA in the Early Detection of SCLC Reveals TP53 Mutations in Non-Cancer Controls (ID 4915)

      14:20 - 15:50  |  Author(s): L. Fernandez-Cuesta, S. Perdomo, P.H. Avogbe, N. Leblay, T.M. Delhomme, V. Gaborieau, B. Abedi-Ardekani, E. Chanudet, M. Olivier, D. Zaridze, A. Mukeria, M. Vilensky, I. Holcatova, J. Polesel, L. Simonato, C. Canova, P. Lagiou, C. Brambilla, E. Brambilla, G. Byrnes, G. Scelo, F. Le Calvez-Kelm, M. Foll, J.D. McKay, P. Brennan

      • Abstract
      • Presentation
      • Slides

      Background:
      Circulating-tumor DNA (ctDNA) is emerging as a key potential biomarker for post-diagnosis surveillance but it may also play a crucial role in the detection of pre-clinical cancer. Small-cell lung cancer (SCLC) is an excellent candidate for early detection given there are no successful therapeutic options for late-stage disease, and it displays universal inactivation of TP53 (Peifer and Fernandez-Cuesta et al., Nat Genet 2012; George et al., Nature 2015).

      Methods:
      We assessed the presence of TP53 mutations in the cell-free DNA (cfDNA) extracted from the plasma of 51 SCLC cases and 123 non-cancer controls. The results were further validated in an independent series of 102 non-cancer controls. We identified mutations using Needlestack (Delhomme et al., in preparation; https://github.com/IARCbioinfo/needlestack), a pipeline specifically designed to accurately detect variants at very low allelic fractions (AF).

      Results:
      We detected TP53 mutations in the cfDNA of 49% of the SCLC patients (35.7% of the stage I-II). While statistically significant in cases versus controls (p-value=6x10[-9]), TP53 mutations were also detected in the cfDNA of 11.4% of the non-cancer controls, and these results were confirmed in the replication series (10.8%). The presence of TP53 mutations in controls was not correlated with age, smoking, or alcohol-intake status. There was a statistically significant difference between the mutational patterns found in cases versus controls (p-value=0.008): within controls the fraction of nonsense, indel, or splicing mutations was lower than in cases. The median AF of the TP53 mutations detected in the five stage I-II SCLC (0.9%) was not significantly different from that found in controls (1.2%; p-value=0.64), while it differed from the median AF of stage III-IV SCLC tumors (8.2%; p-value=2x10[-6]). Finally, we sequenced the DNA extracted from the white-blood cells (WBC) of 39 cfDNA TP53-positive patients, from which material was available (19 cases and 20 controls). Four cfDNA TP53 mutations (1 case and 3 controls) were detected in the WBC DNA, with similar AFs to those found in the cfDNA. These AFs, below 11%, are consistent with a somatic origin in both cfDNA and WBC DNA.

      Conclusion:
      The detection of TP53 mutations in 11% of the 225 non-cancer controls suggests that somatic mutations in cfDNA among individuals without any cancer diagnosis is a common occurrence, and poses serious challenges for the development of ctDNA screening tests for the early diagnosis of cancer (Fernandez-Cuesta, Perdomo, and Avogbe et al., EBioMedicine 2016). We will discuss these results as well as follow-up analyses in retrospective and prospective series.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA11.06 - SWOG 0124: Platinum-Sensitivity Status and Post-Progression Survival in Patients with Extensive-Stage Small Cell Lung Cancer (ID 3974)

      14:20 - 15:50  |  Author(s): P. Lara, J. Miao, J. Moon, M. Redman, D.R. Gandara, K. Kelly

      • Abstract
      • Presentation
      • Slides

      Background:
      Patients with extensive stage small cell lung cancer (ES-SCLC) who progress after frontline platinum-based chemotherapy are often considered “platinum-sensitive” (progression ≥ 90 days from last platinum dose) or “platinum-refractory” (progression < 90 days), as each group reportedly has differential overall survival (OS) outcomes. In a pooled analysis of recent SWOG trials of second and/or third-line targeted therapy, we showed that platinum-sensitivity status may no longer be as strongly associated with OS (Lara et al, JTO 2015). We assessed post-progression survival (PPS) following frontline platinum-based therapy in the context of platinum sensitivity status in ES-SCLC patients treated on SWOG 0124, a phase III trial of Irinotecan/Cisplatin vs Etoposide/Cisplatin.

      Methods:
      Data from 657 patients enrolled in S0124 were pooled. PPS was calculated as OS from the reported progression date. Crude PPS was evaluated according to platinum-sensitivity status. Hazard ratios (HRs) for PPS accounting for platinum-sensitivity and baseline clinical covariates (i.e., measured at the time of first line therapy) were calculated using single and multivariable Cox Proportional Hazard models. Baseline covariates were included in a logistic regression model to identify predictors of platinum-sensitivity. Recursive partitioning analysis (RPA) was performed to define prognostic risk groups.

      Results:
      Of 657 patients, 534 had a progression date and thus included in the analysis: 162 (25%) were platinum-sensitive and 372 (75%) refractory. Fewer patients with PS 0 (32% vs. 41%) and more patients with weight loss > 5% (40% vs. 31%) were seen in the refractory group. Crude unadjusted PPS was higher in platinum-sensitive vs refractory patients (median PPS 7.5 vs. 4.3 months; HR=1.64, p <0.001, 95%CI 1.356, 1.981). A multivariable Cox model showed that baseline elevated serum lactate dehydrogenase (LDH; HR=0.66, p<0.001) and platinum-sensitivity status (HR=1.54, p<0.001) were independently associated with PPS. None of the baseline covariates predicted for platinum-sensitivity. Prognostic groups with differential PPS based on platinum-sensitivity status, gender, and LDH were identified by RPA.

      Conclusion:
      PPS was significantly higher for S0124 patients categorized as platinum-sensitive vs. refractory. Limitations of this work include lack of relevant clinical data at the time of progression and number and type of post-progression therapies. These data have implications for the development of ES-SCLC trials in the salvage setting. [Supported by NIH/NCI/NCTN grants to SWOG: CA180888, CA180819, and in part by Pharmacia & Upjohn, a subsidiary of Pfizer. ClinicalTrials.gov Identifier: NCT00045162]

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA11.07 - Improved Small Cell Lung Cancer (SCLC) Response Rates with Veliparib and Temozolomide: Results from a Phase II Trial (ID 5517)

      14:20 - 15:50  |  Author(s): L.A. Byers, L.M. Krug, S.N. Waqar, A. Dowlati, C.L. Hann, A. Chiappori, T.K. Owonikoko, K.M. Woo, Y. Bensman, B. Hurtado, R. Cardnell, L. Diao, Y. Fan, J. Fujimoto, J. Rodriguez-Canales, L. Long, E.P. Sulman, I. Wistuba, J. Wang, W.D. Travis, A.P. Chen, C. Rudin, M.G. Kris, M. Fleisher, J. Heymach, M.C. Pietanza

      • Abstract
      • Presentation
      • Slides

      Background:
      PARP1 is overexpressed in small cell lung cancer (SCLC) and represents a novel therapeutic target for this disease. Preclinical data indicates that combining veliparib (an oral PARP-1/2 inhibitor) and temozolomide (TMZ) results in synergistic tumor growth delay or regression. In this study, we investigated whether adding veliparib to TMZ would improve outcomes in patients with relapsed sensitive and refractory SCLCs. Candidate predictive biomarkers, including SLFN11, were then explored.

      Methods:
      SCLC patients previously treated with 1 or 2 prior regimens were enrolled in the trial and randomized 1:1 to receive oral TMZ 150-200mg/m[2]/day (D1-5) with either veliparib or placebo 40mg twice daily, orally (D1-7) (NCT01638546). Primary endpoint was 4-month progression free survival (PFS). Data were analyzed in patients with platinum sensitive (progression >60 days after 1st line therapy) or refractory disease (progression ≤60 days after 1st line therapy, or in need of 3rd line treatment). Archived tissue was available for 53 patients for biomarker analysis.

      Results:
      104 patients were enrolled and 100 patients were treated. Baseline characteristics were balanced between treatment arms: 52% female; median age 62.5 (range, 31-84); 59% refractory disease; 33% needing 3rd-line therapy. Progression free survival at 4-months was similar between the two arms, 36% vs. 27% (p=0.39). However, in 93 evaluable pts, response rate was significantly higher in pts treated with veliparib/TMZ compared to TMZ alone (39% vs 14%, p =0.016). Median overall survival: 8.2 mos (95% CI: 6.4-12.2) in veliparib arm and 7 mos (95% CI: 5.3-9.5) in placebo arm, p = 0.50. Grade 3/4 thrombocytopenia and neutropenia more commonly occurred in the veliparib/TMZ arm: 50% vs 9% and 31% vs 7%, respectively. Levels of SLFN11, a marker of SCLC response to PARP inhibition in preclinical models, were assessed by immunohistochemistry. High SLFN11 in patient tumors (obtained at original diagnosis) was associated with a trend towards better overall survival in the veliparib/TMZ arm, but no difference in outcome in the TMZ alone arm. Additional correlative studies are ongoing, including assessment of MGMT promoter methylation, and will be available at the time of presentation.

      Conclusion:
      The combination of veliparib/TMZ increased response rates significantly, compared to TMZ alone. Hematologic toxicities of the combination may have impacted PFS (which was not significantly different between the arms) by limiting dosing. Biomarkers such as SLFN11, ATM, or MGMT promoter methylation could potentially help guide patient selection in the SCLC population.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA11.08 - Discussant for MA11.05, MA11.06, MA11.07 (ID 7017)

      14:20 - 15:50  |  Author(s): A. Ardizzoni

      • Abstract
      • Presentation
      • Slides

      Abstract not provided

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA11.09 - Progastrin-Releasing Peptide (ProGRP) to Rule out Progressive Disease in Patients with Small Cell Lung Carcinoma (SCLC) (ID 4002)

      14:20 - 15:50  |  Author(s): T. Muley, X. Zhang, S. Holdenrieder, C.M. Korse, X. Zhi, R. Molina, Z. Liu, G. Hartmann, M. Van Den Heuvel, K. Qian, R. Marrades, C. Engel, Y. He, B. Wehnl, F. Dayyani, F.J. Herth

      • Abstract
      • Presentation
      • Slides

      Background:
      For patients with SCLC, response to chemotherapy is monitored by computed tomography (CT) scans, which can be costly and inconvenient. A previous study showed that baseline levels (>100 pg/ml) of the tumor marker, ProGRP, were positively correlated with advanced SCLC, and a decline in ProGRP levels during treatment was associated with response.[1] However, the best approach to fully exploit ProGRP for monitoring treatment response is still unknown. The objective of this study was to determine if progression could be ruled out solely by combining the changes in ProGRP levels over two chemotherapy cycles.

      Methods:
      Patients with SCLC receiving first-line platinum-based doublet chemotherapy or a single-agent cytotoxic in any subsequent treatment line were included from six centers in Europe and China. Samples were collected prospectively and ProGRP levels were measured in serum or plasma samples using a fully automated ProGRP assay at baseline and after chemotherapy cycles 1 and 2. Only patients with blood samples taken at these time points and with elevated baseline ProGRP >100 pg/ml were eligible for this analysis. A logistic regression model was calculated to incorporate changes after the first cycle (i.e. from baseline to the end of cycle 1) and in between cycles (i.e. end of cycle 1 to the end of cycle 2). Progression was ascertained with CT scans. A non-progressor was defined as a patient with complete response, partial response, or stable disease, according to the RECIST v1.1 or WHO criteria. Progressors were patients with progressive disease only.

      Results:
      Overall, 123 patients (n=108 non-progressors, n=15 progressors) satisfied the eligibility criteria. Median age was 62.0 years (range 36.0–83.0), 56% were male, and 78% reported to be current or past smokers. In this population, a decline in ProGRP from both baseline to cycle 1 and from cycle 1 to cycle 2 was associated with non-progression (AUC 91.5%; 95% CI: 85.3−97.8; sensitivity 100%; specificity 71%). All patients who experienced a >25% relative decline in ProGRP levels after the first chemotherapy cycle, followed by any further decrease (>0%) after the second cycle, were found to be non-progressors.

      Conclusion:
      By measuring the change in ProGRP levels at baseline and after each of the two subsequent chemotherapy cycles, we were able to identify patients with non-progressive disease. This might reduce the need for interim CT scans. References 1. Muley, et al. Journal of Thoracic Oncology 2015; 10(9) Supplement 2:MINI27.13

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA11.10 - Prospective Study of Genome-Wide Strexome and Transcriptome Profiling in Patients with Small Cell Lung Cancer Progressing after 1st Line Therapy (ID 4197)

      14:20 - 15:50  |  Author(s): G.J. Weiss, A. Sangal, H. Barilla, S. Byron, J.A. Kiefer, J.L. Aldrich, T.G. Whitsett, J.D. Carpten, D.W. Craig

      • Abstract
      • Presentation
      • Slides

      Background:
      Small cell lung cancer (SCLC) that has progressed after 1[st] line therapy has few effective treatments and no new class of approved therapies in over 20 years. Paired tumor-normal exome and transcriptome sequencing efficiency, coverage, cost, and analytics has improved over the last decade and has begun to be applied in the clinic. In this prospective study, we used genome-wide strexome (exome+structural variation) plus whole transcriptome sequencing (NGS) to identify genomic events and associated expression changes in advanced SCLC and attempt to prescribe systemic therapy based on the results (NCT02297087, study was funded by SU2C).

      Methods:
      After informed consent a prospective fresh frozen tumor biopsy was obtained. Germline DNA was extracted from PBMC and reference normal tissue RNA was obtained commercially. Strexome and RNA-seq libraries were prepped and NGS, data analysis, and reporting were performed in a CLIA-certified CAP accredited environment.

      Results:
      The study completed its accrual goal of 12 evaluable patients. There was one screen failure due to anticipated inadequate sample yield because of tumor location. The cohort included 10 women, median age was 56.5 years and had 3 never smokers. All patients received prior platinum-based chemotherapy and were receiving >1[st] line systemic treatment while awaiting NGS results. The minimum tumor content for successful NGS was 20%. The median turnaround time from sample collection to report was 27 days (range 21-38). Average strexome coverage was 420X (tumor), 200X (germline), with an average of 277 million RNA reads generated for tumors. All patients had ³2 clinically actionable targets identified (associated with a commercially available, FDA-approved drug by predefined rules), median 4 targets (range 2-8). Three patients received treatment identified by NGS. One has continuing partial response by RECIST 1.1 >8 months on a clinical trial involving PD-1 inhibitor+irinotecan (MLH1 mutation); treatment linked to NGS was already initiated prior to the report becoming available. One is too early to evaluate on olaparib (PARP1 mutation), and one had disease progression on dasatinib (KIT overexpression) as best overall response. One patient has not yet received NGS recommended therapy, and the remaining 8 evaluable patients had clinical deterioration or died before NGS recommended therapy was initiated.

      Conclusion:
      SCLC after 1[st] line therapy tends to have more rapid progression and deterioration making NGS application for systemic therapy challenging. Either applying NGS earlier in the earlier stages of disease course or further improvements in turnaround time may better address these challenges.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA11.11 - Is Hippocampal Avoidance during Whole Brain Radiotherapy Risky for Small Cell Lung Cancer Patients? (ID 3735)

      14:20 - 15:50  |  Author(s): E.K. Kirakli, O. Oztekin

      • Abstract
      • Presentation
      • Slides

      Background:
      Hippocampal avoidance (HA) during whole brain radiotherapy (WBRT) is performed to prevent neural stem-cell injury causing decreased neurocognitive function. Nevertheless, the estimated risk for metastases in HA area in small cell lung cancer (SCLC) patients is unknown. The current study aimed to characterize the metastatic distribution within the brain relative to the hippocampus and estimate the incidence of hippocampal metastasis in SCLC patients and also identify clinical and radiographic variables that may be associated with the presence of metastases within the HA area.

      Methods:
      SCLC patients treated with WBRT between January 2010 and December 2015 were reviewed. T1-wighted, post-contrast axial MRI (1.5 or 3 Tesla) images obtained just before therapeutic cranial irradiation were retrieved and reviewed for each patient. The HA area was generated by expanding the hippocampal contour by 5 mm volumetrically to account for necessary dose fall-off between the hippocampus (HP) and the whole brain planning target volume. Metastatic lesions within HP or HA area were defined as HP metastasis. HP metastasis rate was evaluated and characteristics of patients with HP metastasis were analyzed and compared to patients without HP metastasis.

      Results:
      54 patients evaluated with cranial MRI were enrolled. HP metastasis rate was 32% (17 patients). 4.4% of all metastases involved the HP and HA area (2.2% of metastases each) Figure 1. The most common location of metastasis was frontal lobe followed by cerebellum and temporal lobe. Having diabetes mellitus (OR: 12.1, 95% CI: 1.1-137.4, p=0.045) and being younger than 65 years of age (OR: 4.8, 95% CI: 1-23.2, p=0.049) were found to be independent risk factors for HP metastasis.



      Conclusion:
      HP metastasis might be more common in SCLC patients. Reducing the dose to the HP by HA-WBRT plan in SCLC may be risky for the development of HP metastasis compared with other malignant solid tumors.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA11.12 - Discussant for MA11.09, MA11.10, MA11.11 (ID 7084)

      14:20 - 15:50  |  Author(s): H. Kunitoh

      • Abstract
      • Presentation
      • Slides

      Abstract not provided

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.



Author of

  • +

    MA15 - Immunotherapy Prediction (ID 400)

    • Event: WCLC 2016
    • Type: Mini Oral Session
    • Track: Chemotherapy/Targeted Therapy/Immunotherapy
    • Presentations: 1
    • +

      MA15.05 - PD-L1 Immunohistochemistry as Biomarker in Non-Small Cell Lung Cancer (NSCLC) (ID 4982)

      14:20 - 15:50  |  Author(s): A. Mohn-Staudner

      • Abstract
      • Slides

      Background:
      Anti-PD1 (programmed cell death 1) therapeutic antibodies have recently become available as a promising option in the treatment of patients with NSCLC in Austria. Several clinical studies suggested PD-L1 (programmed cell death ligand 1) protein expression in tumor cells to be a useful prognostic biomarker using several antibodies and different cutoffs. We studied PD-L1 expression in our NSCLC patient cohort and compared the performance of different antibodies. Furthermore we aimed to investigate the value of PD-L1 expression as a biomarker in a subset of patients treated with Anti-PD1 immunotherapy.

      Methods:
      PD-L1-Imunohistochemistry (IHC) was performed in 437 lung cancer specimens (316 adenocarcinomas, 77 squamous cell carcinomas and 44 NSCLC NOS) using the clones SP263 (Ventana), 28.8 (Abcam) and EL1L3N (Cell Signaling) on the VENTANA IHC platform. The percentages of tumor cells (TC) with membranous staining were determined - irrelevant of staining intensity; TC-counts of less than 1 % were interpreted as negative. Staining with at least two of the antibodies was available in 378 specimens (SP263/28.8 in 320 and 28.8/E1L3N in 117). 60 specimens were stained with three antibodies. From 58 patients receiving Nivolumab clinical information about response to therapy was available.

      Results:
      PD-L1 was expressed in 244 specimens (54.84%). 112 (25.63%) showed TC counts ≥50%, and 132 (30.21%) were <50%. 193 (44.16%) were negative. SP263 showed stronger staining intensity than 28.8 and E1L3N. Differences in TC-percentage were seen in 67 of 378 specimens, with major changes in 16 specimens (negative to positive in 4 and <50% to ≥50% in 12 cases). Higher TC percentages were seen with SP263. In the 58 treated patients complete remission was seen in 6 (4 ≥50%, 2 negative), partial remission in 14 (10 ≥50%, 3 <50%, 1 negative), stable disease in 4 (2 <50%, 2 negative), paradox reaction in 7 (1 ≥50%, 3 <50%, 3 negative) and progressive disease in 27 (4 ≥50%, 14 <50%, 9 negative).

      Conclusion:
      PD-L1 is expressed in the majority of NSCLC patients. Despite minor differences in expression levels all three tests provided reliable results. Furthermore PD-L1-IHC showed to be a useful biomarker in NSCLC especially concerning the good response to Anti-PD1 therapy in tumors with PD-L1 expression ≥50%. However as some PD-L1 negative tumors also responded, negative test results cannot definitely exclude patients from immunotherapy.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P1.04 - Poster Session with Presenters Present (ID 456)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Pulmonology
    • Presentations: 1
    • +

      P1.04-001 - EGFR, EML4-ALK, ROS 1 and BRAF Testing in Austrian Patients with NSCLC: A Multicentre Study (ID 4449)

      14:30 - 15:45  |  Author(s): A. Mohn-Staudner

      • Abstract
      • Slides

      Background:
      Targeted therapy is becoming increasingly important and has improved the overall survival for patients with NSCLC. EGFR and BRAF mutations, EML4-ALK and ROS1 translocations are current allocatable targets. The incidence of these druggable targets in Austria is unknown.

      Methods:
      Tumor tissue from bronchoscopy, CT- and ultrasound guided biopsies as well as surgical specimen with histological type of adenocarcinoma and NSCLC NOS (Not Otherwise Specified) were routinely analyzed independent of the tumor stage and clinical characteristics (reflex testing) for these genetic alterations. Since January 2010 the EGFR mutation detection was performed with the EGFR Mutation Test Kit from ROCHE on a COBAS4800. Since August 2011 tumor tissue was analyzed for EML4-ALK with a two-step procedure. First an immunohistochemical staining was done with the Ventana anti ALK(D5F3), OptiView DAB IHC DetectionKit and OptiViewAmplifikationKit® and further on positive cases were tested by PCR (AmoyDx®EML4-ALK FusionGeneDetectionKit) or ALK FISH (dual colour breakapart FISH/Abbott Vysis®). Since January 2014 the tumor tissue was analyzed for ROS1 with a two-step procedure. First an immunohistochemical staining was done with ROS1 D4D6, cell signaling® and further on positive cases were tested by PCR (AmoyDx®ROS1 GeneFusionDetectionKit) or ROS1 FISH (ROS1-6q22.1 dual colour breakapart probe ZytoVision®). BRAF testing was performed with the cobas®4800BRAF V600Mutation Test from Roche since March 2016.

      Results:
      An EGFR Mutation was found in 340 out of 2776 patients (12.2%). 253 patients (9.1%) carried an activated mutation (Exon 19 Deletion, Exon 21 L858R). EML4-ALK positive translocation was found in 100 out of 2212 patients (4.5%). ROS1 positive translocation was found in 5 out of 1060 patients (0.5%). BRAF mutation was found in 3 patients out of 40 (7.5%).

      Conclusion:
      Frequency of these genetic alterations in Austrian patients with NSCLC was quite similar to other Caucasian peers. Therefore reflex testing is recommended independent of any clinical characterization.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P3.02b - Poster Session with Presenters Present (ID 494)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Advanced NSCLC
    • Presentations: 2
    • +

      P3.02b-032 - Association between EGFR T790M Mutation Copy Numbers in Cell-Free Plasma DNA and Response to Osimertinib in Advanced NSCLC (ID 5454)

      14:30 - 15:45  |  Author(s): A. Mohn-Staudner

      • Abstract
      • Slides

      Background:
      Patients with advanced EGFR-mutated non-small-cell lung cancer (NSCLC) who developed the T790M resistance mutation during treatment with EGFR tyrosine kinase inhibitors (TKIs) benefit from treatment with third-generation EGFR TKIs such as osimertinib. Treatment with osimertinib requires the confirmation of the presence of the T790M mutation by re-biopsy of the tumor or by analysis of cell-free plasma DNA from blood samples (liquid biopsy). The purpose of our study was to compare T790M mutation copy numbers in cell-free plasma DNA with response to osimertinib.

      Methods:
      From April 2015 to June 2016, we included 44 patients with advanced T790M-positive NSCLC who received osimertinib after previous disease progression with an EFGR TKI and in whom response to osimertinib was evaluable. T790M mutation status was assessed by droplet digital PCR in cell-free plasma DNA. The threshold for T790M positivity was >1 copy/mL.

      Results:
      The T790M mutation status was assessed in all patients by liquid biopsy and in 18 patients also by re-biopsy of the tumor. All 44 patients were T790M-positive in the liquid biopsy. Two out of 18 (11%) patients had a T790M-negative re-biopsy. Thirty-seven patients (86%) showed a response to treatment with osimertinib: 13 (29.5%) complete responses (CR), 24 (54.5%) partial responses (PR), one (2%) stable disease (SD), and six (14%) progressive disease (PD) (Table 1). We observed no statistically significant association between response to osimertinib and T790M copy numbers (p=0.54; Table 1). The median T790M copy numbers across response categories were: CR 25 copies/mL (range 1.7-38092 copies/mL), PR 14 copies/mL (range 1.6-7282 copies/mL), SD+PD 6 copies/mL (range 1.8-475 copies/mL).

      Table 1 Response
      Copies/mL CR PR SD PD
      <10 5 (39%) 11 (46%) 0 (0%) 4 (67%)
      ≥10 8 (62%) 13 (54%) 1 (100%) 2 (33%)


      Conclusion:
      Patients benefited from osimertinib treatment independent of T790M copy numbers in the blood samples. Although limited by low numbers, we observed a trend towards better response to osimertinib in patients with ≥10 T790M copies/mL.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      P3.02b-101 - EGFR T790M Resistance Mutation in NSCLC: Real-Life Data of Austrian Patients Treated with Osimertinib (ID 4225)

      14:30 - 15:45  |  Author(s): A. Mohn-Staudner

      • Abstract
      • Slides

      Background:
      Somatic mutations in the epidermal growth factor receptor (EGFR) are detected in approximately 13% of the Austrian non-small cell lung cancer (NSCLC) patients. The EGFR T790M resistance mutation located on Exon 20 is the most common mechanism of drug resistance to EGFR tyrosine kinase inhibitors (TKI) in these patients. The mutation can be detected by re-biopsy as well liquid biopsy. Osimertinib (AZD9291), a 3[rd] generation EGFR-TKI, showed a highly clinical activity in these patients. We report about our experience with Osimertinib in EGFR-mutated NSCLC patients, who became resistant to first or second generation TKI`s due to EGFR T790M mutation.

      Methods:
      From April 2015 to June 2016 we administered osimertinib 80 mg daily to 82 patients who had disease progression after previous treatment with an EFGR TKI. The T790M mutation status was assessed by re-biopsy and/or liquid biopsy. For liquid biopsies, blood samples were collected in EDTA-containing vacutainer tubes and processed within 2 hours after collection. Cell-free plasma DNA was extracted by using the QIAamp circulating nucleic acid kit (Qiagen) according to the manufacturer’s instructions. Mutation status was assessed with QX-100™ Droplet Digital™ PCR System (Bio-Rad).

      Results:
      The T790M mutation status was assessed in 48 patients by liquid biopsy only and in 13 patients by re-biopsy of the tumor. In 21 patients the T790M mutation was detected by both methods. 70 (85%) patients showed a clear clinical and radiographic response. Out of these, 70 patients, 14 (17%) patients reached a complete remission, 56 (68%) patients showed partial response and in 5 (6%) patients, a stable disease after treatment with osimertinib was observed. Five patients had symptomatic brain metastasis initaly without any further option of local treatment, and showed a clear a clear clinical benefit and a partial remission radiographically. Osimertinib was well tolerated. No clinically relevant significant side effects were reported.

      Conclusion:
      Osimertinib was highly active in our patients, while showing good safety profile. Therefore, re-biopsy or liquid biopsy should be performed in clinical routine to detect the T790M mutation. With the above described method, liquid biopsy could replace re-biopsy in clinical practice in the future.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.