Virtual Library

Start Your Search

S.M. Gadgeel



Author of

  • +

    MA07 - ALK-ROS1 in Advanced NSCLC (ID 385)

    • Event: WCLC 2016
    • Type: Mini Oral Session
    • Track: Advanced NSCLC
    • Presentations: 2
    • +

      MA07.01 - Updated Pooled Analysis of CNS Endpoints in Two Phase II Studies of Alectinib in ALK+ NSCLC (ID 5354)

      11:00 - 12:30  |  Author(s): S.M. Gadgeel

      • Abstract
      • Presentation
      • Slides

      Background:
      Based on two single-arm, multicentre, phase II studies (NP28673 [NCT01801111] and NP28761 [NCT01871805]), the FDA approved the ALK inhibitor alectinib for use in ALK+ NSCLC patients after prior crizotinib. Alectinib was well tolerated in both phase II studies and showed efficacy against both systemic and central nervous system (CNS) disease, the latter being a common progression site in ALK+ NSCLC. This analysis uses pooled data from the latest cut-offs (22 Jan 2016 for NP28761; 1 Feb 2016 for NP28673) to examine the long-term CNS efficacy of alectinib.

      Methods:
      Both studies enrolled crizotinib-refractory patients ≥18 years with ECOG PS 0–2 and locally advanced or metastatic ALK+ NSCLC (confirmed by FDA-approved test). CNS metastases were permitted if asymptomatic. Patients received 600mg oral alectinib BID. The primary endpoint in both studies was objective response rate (ORR) by independent review committee; secondary CNS endpoints included CNS ORR, CNS duration of response (DoR), and CNS disease control rate (DCR). CNS response and progression were determined by RECIST v1.1. All patients had baseline imaging to assess CNS metastases, with further imaging every 6 or 8 weeks for NP28761 and NP28673, respectively.

      Results:
      The overall pooled analysis population comprised 225 patients (n=87 from NP28761; n=138 from NP28673); median follow-up for this updated analysis was 18.8 (0.6–29.7) months (>6 months additional follow-up). At baseline, 50 patients had measurable and 86 had non-measurable CNS disease; together, these groups comprised 136 patients, 60% of the overall pooled population. Seventy percent of patients had prior CNS radiotherapy; 58% of these completed radiotherapy >6 months before study entry. Updated CNS data are shown in the Table and are consistent with systemic results.

      Measurable CNS disease at baseline (n=50) Measurable and non-measurable CNS disease at baseline (n=136)
      CNS ORR, n (%) [95% CI] 32 (64.0) [49.2–77.1] 60* (44.1) [35.6–52.9]
      Complete response (CR), n (%) 11 (22.0) 39* (28.7)
      CNS DCR, n (%) [95% CI] 45 (90.0) [78.2–96.7] 117 (86.0) [79.1–91.4]
      Median CNS DoR, months [95% CI] Patients with event, n (%) 11.1 [7.6–NE] 18 (56.3) 13.8 [11.0–21.5] 32 (53.3)
      * N.B. Non-measurable disease response can only be classified as CR, non-CR/non-progressive disease (PD) or PD


      Conclusion:
      This updated pooled analysis with mature data confirms that alectinib can provide long-term control of CNS metastases in ALK+ NSCLC, with a high CR rate.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA07.02 - Updated Efficacy and Safety Data from the Phase 2 NP28761 Study of Alectinib in ALK-Positive Non-Small-Cell Lung Cancer (ID 4918)

      11:00 - 12:30  |  Author(s): S.M. Gadgeel

      • Abstract
      • Presentation
      • Slides

      Background:
      Alectinib, a CNS-active and highly selective ALK inhibitor, has efficacy in patients with ALK-positive NSCLC with and without previous crizotinib treatment. Updated efficacy and safety from the alectinib phase 2 North American NP28761 study (NCT01871805) of patients with ALK-positive NSCLC previously treated with crizotinib, with 15 months’ additional follow-up from the primary analysis and 9 months’ additional follow-up from the previous analysis are presented.

      Methods:
      Patients ≥18 years old with ALK-positive NSCLC (FDA-approved FISH test), disease progression following crizotinib, and ECOG PS ≤2 were enrolled. Patients received oral alectinib (600mg) twice daily until progression, death or withdrawal. Primary endpoint: overall response rate (ORR) by independent review committee (IRC; RECIST v1.1.) Secondary endpoints: investigator-assessed ORR; progression-free survival (PFS); overall survival (OS), CNS ORR (CORR); disease control rate (DCR); safety.

      Results:
      At the updated cut-off (22 January 2016) an additional 15 months' follow-up from the primary analysis, 87 patients were enrolled. Median follow-up: 17.0 months (range 1.1–28.6). ORR in the response evaluable population (REP; n=67) by IRC: 52.2% (95% CI 39.7–64.6), median duration of response: 14.9 months. Median PFS and OS: 8.0 and 22.7 months, respectively. Table 1 presents other efficacy endpoints. Grade ≥3 AEs were reported in 41% of the safety population (n=87); most common: elevated levels of blood creatine phosphokinase (8%), alanine aminotransferase (6%), aspartate aminotransferase (5%). Two patients withdrew due to AEs; 28% had AEs leading to dose modification/interruption. Mean dose intensity was 92.0%.

      IRC REP Responders, n CR, n (%) PR, n (%) SD, n (%) PD, n (%) Missing/NE, n (%) DCR, % (95% CI) n=67[*] 35 0 (0) 35 (52.2) 18 (26.9) 11 (16.4) 3 (4.5) 79.1 (67.4,88.1)
      Investigator REP Responders, n ORR, % (95% CI) n=87 [46[†]] 52.9 (41.9, 63.7)
      Measurable baseline CNS lesions (IRC)‖ Responders, n CORR, % (95% CI) Measurable/non-measurable baseline CNS lesions (IRC) Responders CORR,[‖] % (95% CI) n=16 12[‡] 75.0 (47.6, 92.7) n=52 21[§] 40.4 (27.0, 54.9)
      *n=20 did not have measurable disease per IRC and were not included in the IRC REP; [†]2 CR;[ ‡]4 CR;[ §]13 CR; [‖]non-measurable disease classified as CR, non-CR/non-PD or PD; NE=not evaluable/estimable

      Conclusion:
      Alectinib demonstrated durable responses, encouraging OS findings, good tolerability and an acceptable safety profile consistent with previous reports in this update of the NP28761 study with extended follow-up.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MA08 - Treatment Monitoring in Advanced NSCLC (ID 386)

    • Event: WCLC 2016
    • Type: Mini Oral Session
    • Track: Advanced NSCLC
    • Presentations: 1
    • +

      MA08.01 - A Highly Sensitive Next-Generation Sequencing Platform for Detection of NSCLC EGFR T790M Mutation in Urine and Plasma (ID 4637)

      11:00 - 12:30  |  Author(s): S.M. Gadgeel

      • Abstract
      • Presentation
      • Slides

      Background:
      Non-invasive genotyping of NSCLC patients by circulating tumor (ct)DNA is a promising alternative to tissue biopsies. However, ctDNA EGFR analysis remains challenging in patients with intrathoracic disease, with a reported 26-57% T790M mutation detection rate in plasma (Karlovich et al., Clin Cancer Res 2016; Wakelee et al., ASCO 2016). We investigated whether a mutation enrichment NGS could improve mutation detection in plasma and urine from TIGER-X, a phase 1/2 study of rociletinib in patients with EGFR mutation-positive advanced NSCLC.

      Methods:
      The therascreen (Qiagen) or cobas (Roche) EGFR test was used for EGFR T790M analysis in tumor biopsies. Urine and plasma were analyzed by trovera mutation enrichment NGS assay (Trovagene).

      Results:
      Of 174 matched tissue, plasma and urine specimens, 145 (83.3%) were T790M+ by central tissue testing, 142 (81.6%) were T790M+ by plasma, and 139 (79.9%) were T790M+ by urine. Urine and plasma combined identified 165 cases (94.8%) as T790M+. Of 25 cases positive by ctDNA but negative/inadequate by tissue, 16 were double-positive in plasma and urine, unlikely to be false positive (Figure 1). T790M detection rate was higher for extrathoracic (n=119) vs intrathoracic (n=55) disease in plasma (87.4% vs 69.1%, p=0.006) but not urine (81.5% vs 76.4%, p=0.42). Combination of urine and plasma identified T790M in 92.7% of intrathoracic and 95.8% of extrathoracic cases (p=0.47). In T790M+ patients, objective response rate was similar whether T790M mutation was identified by tissue, plasma or urine: 37.4%, 33.1% and 36.6%, respectively. 4 of 9 patients T790M+ by urine but negative by tissue responded, and 2 of 8 patients T790M+ by plasma but negative by tissue responded.

      Conclusion:
      Mutation enrichment NGS testing by urine and plasma combined identified 94.8% of T790M+ cases. Combination of urine and plasma may be considered before tissue testing in EGFR TKI resistant NSCLC, including patients without extrathoracic metastases. Figure 1



      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MA09 - Immunotherapy Combinations (ID 390)

    • Event: WCLC 2016
    • Type: Mini Oral Session
    • Track: Chemotherapy/Targeted Therapy/Immunotherapy
    • Presentations: 1
    • +

      MA09.02 - Pembrolizumab + Carboplatin and Pemetrexed as 1st-Line Therapy for Advanced Non–Small Cell Lung Cancer: KEYNOTE-021 Cohort G (ID 5787)

      14:20 - 15:50  |  Author(s): S.M. Gadgeel

      • Abstract
      • Presentation
      • Slides

      Background:
      Platinum doublet chemotherapy ± bevacizumab is standard first-line therapy for patients with advanced non–small cell lung cancer (NSCLC) without genetic aberrations. Single-agent pembrolizumab exhibits robust antitumor activity in PD-L1–positive advanced NSCLC. Cohort G of the multicenter, open-label, phase 1/2 multicohort KEYNOTE-021 study (ClinicalTrials.gov, NCT02039674) evaluated the efficacy and safety of pembrolizumab + carboplatin and pemetrexed compared with carboplatin and pemetrexed in patients with treatment-naive advanced nonsquamous NSCLC with any PD-L1 expression.

      Methods:
      Cohort G enrollment criteria included patients with stage IIIB/IV nonsquamous NSCLC, no activating EGFR mutation or ALK translocation, no prior systemic therapy, measurable disease, ECOG performance status 0-1, and adequate tumor sample for assessment of PD-L1 status, regardless of PD-L1 expression. Patients were randomized 1:1 to 4 cycles of pembrolizumab 200 mg Q3W + carboplatin AUC 5 (5 mg/mL/min) + pemetrexed 500 mg/m[2] Q3W or carboplatin AUC 5 (5 mg/mL/min) + pemetrexed 500 mg/m[2] Q3W alone, followed by maintenance pemetrexed ± pembrolizumab. Pembrolizumab was given for ≤35 cycles. Randomization was stratified by PD-L1 expression (positive [tumor proportion score, or TPS, ≥1%] vs negative [TPS <1%]). Crossover to pembrolizumab monotherapy was allowed for eligible patients who experienced disease progression (RECIST v1.1) on chemotherapy. Response was assessed by central imaging vendor review every 6 weeks for first 18 weeks, every 9 weeks through year 1, and every 12 weeks in year 2. The primary end point was objective response rate (ORR); secondary end points included progression-free survival (PFS), duration of response, and overall survival (OS). Comparison between arms was assessed using the stratified Miettinen and Nurminen method (ORR) and stratified log-rank test (PFS, OS).

      Results:
      As of January 2016, 123 patients (60 in the pembrolizumab + chemotherapy arm, 63 in the chemotherapy arm) had been enrolled in cohort G. Data on ORR, duration of response, safety, and preliminary PFS and OS results will be available by August 2016.

      Conclusion:
      The conclusion will be updated at the late-breaking submission stage.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    OA03 - Immunotherapy Checkpoint Inhibitors in Advanced NSCLC (ID 367)

    • Event: WCLC 2016
    • Type: Oral Session
    • Track: Chemotherapy/Targeted Therapy/Immunotherapy
    • Presentations: 1
    • +

      OA03.07 - KEYNOTE-010: Durable Clinical Benefit in Patients with Previously Treated, PD-L1-Expressing NSCLC Who Completed Pembrolizumab  (ID 6769)

      11:00 - 12:30  |  Author(s): S.M. Gadgeel

      • Abstract
      • Presentation
      • Slides

      Background:
      Checkpoint inhibitors such as the anti–PD-1 monoclonal antibody pembrolizumab have demonstrated antitumor activity and a manageable safety profile in several advanced malignancies. Although checkpoint inhibitors are rapidly becoming a standard-of-care therapy in multiple tumor types, the optimal treatment duration has not been established. We assessed outcomes in patients who completed the maximum 24 months of pembrolizumab in the phase 3 KEYNOTE-010 study (NCT01905657), in which pembrolizumab provided superior OS over docetaxel in patients with previously treated, PD-L1–expressing advanced NSCLC.

      Methods:
      1034 patients with advanced NSCLC that progressed after ≥2 cycles of platinum-based chemotherapy (and an appropriate therapy for targetable EGFR and ALK aberrations if present) and had a PD-L1 tumor proportion score ≥1% were randomized 1:1:1 to pembrolizumab 2 or 10 mg/kg Q3W or to docetaxel 75 mg/m[2] until disease progression, intolerable toxicity, or physician or patient decision; the maximum duration of pembrolizumab was 24 months of uninterrupted treatment or 35 cycles, whichever was later. Response was assessed per RECIST v1.1 by independent central review every 9 weeks. After completion of 24 months/35 cycles, patients continued to undergo imaging every 9 weeks; patients with subsequent disease progression were eligible for a second treatment course if they did not receive other anticancer therapy after stopping pembrolizumab.

      Results:
      In the overall population, median OS was longer (10.5 months for pembrolizumab Q2W, 13.4 months for pembrolizumab Q3W, and 8.6 months for docetaxel) and 24-month OS rates were higher (30.1%, 37.5%, and 14.5%, respectively) with pembrolizumab compared with docetaxel. Of the 691 patients allocated to pembrolizumab, 47 patients received 35 cycles of pembrolizumab and were included in this analysis. As of the September 30, 2016 data cutoff date, all patients had completed all 35 cycles of treatment, but one withdrew from the study treatment after completing 35 cycles. Best overall response (ORR) among these 47 patients was complete response (CR) in 3 (6%) patients and partial response (PR) in 39 (83%) patients, for an ORR of 89%; 5 (11%) patients experienced stable disease (SD). Two of these patients experienced disease progression since stopping pembrolizumab and two of these patients resumed pembrolizumab therapy. As of the cutoff date, none of the 47 patients had died.

      Conclusion:
      With long-term follow-up, the OS benefit has been maintained and pembrolizumab continues to demonstrate superiority over docetaxel. Pembrolizumab provides durable clinical benefit with few patients progressing after completing two years of therapy.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    OA23 - EGFR Targeted Therapies in Advanced NSCLC (ID 410)

    • Event: WCLC 2016
    • Type: Oral Session
    • Track: Advanced NSCLC
    • Presentations: 1
    • +

      OA23.03 - Second-Line Afatinib for Advanced Squamous Cell Carcinoma of the Lung: Analysis of Afatinib Long-Term Responders in the Phase III LUX-Lung 8 Trial (ID 4711)

      14:20 - 15:50  |  Author(s): S.M. Gadgeel

      • Abstract
      • Presentation
      • Slides

      Background:
      Squamous cell carcinoma (SCC) of the lung is a genetically complex and difficult-to-treat cancer. In LUX-Lung 8, afatinib (40mg/day) significantly improved OS (median 7.9 vs 6.8 months, HR=0.81 [95% CI, 0.69‒0.95], p=0.008), PFS (2.6 vs 1.9 months, HR=0.81 [0.69‒0.96], p=0.010) and DCR versus erlotinib (150mg/day) in patients with relapsed/refractory SCC of the lung (n=795). Notably, 12-month (36 vs 28%; p=0.016) and 18-month survival (22 vs 14%; p=0.016) was significantly higher with afatinib than erlotinib, indicating that some patients derive prolonged benefit from afatinib. Here, we present post-hoc analysis of baseline characteristics and efficacy/safety of afatinib in long-term responders (treatment for ≥12 months). Hypothesis-generating analysis of archived tumor samples and blood serum was undertaken to identify possible molecular/clinical biomarkers.

      Methods:
      Tumor samples were retrospectively analyzed using FoundationOne[TM] next-generation sequencing (NGS); EGFR expression was determined by immunohistochemistry. Pre-treatment serum samples were analyzed with VeriStrat[®], a MALDI-TOF mass spectrometry test, and classified as VeriStrat-Good or VeriStrat-Poor-risk.

      Results:
      15/398 patients treated with afatinib were long-term responders. Median duration of treatment was 16.6 months (range: 12.3‒25.8). Patient characteristics were similar to the overall dataset (median age: 65 years [range: 54‒81]; male: 80.0%; Asian: 13.3%; ECOG 0/1: 40.0%/60.0%; best response to chemotherapy CR or PR/SD: 53.3%/46.7%; current and ex-smokers: 80.0%). Median PFS was 16.2 months (range: 2.8‒24.0); median OS was 23.1 months (range: 12.9‒31.5). The most common treatment-related AEs (all grade/grade 3) were: diarrhea (73.3%/6.7%); rash/acne (66.7%/6.7%); stomatitis (13%/7%). AEs generally occurred soon after treatment onset (median onset, days [range]: diarrhea 11 [5‒48]; rash/acne 17 [9‒107]; stomatitis 15 [11‒19]). Four patients required a dose reduction to 30mg/day due to treatment-related AEs (diarrhea, rash, stomatitis, diarrhea/rash). NGS was undertaken in 9 patients and details will be presented at the meeting. Genomic aberrations in the ErbB/FGF gene families were identified in 44.4%/55.6% of long-term responders (overall dataset: 29.4%/58.0%). Of 14 patients assessed by VeriStrat, 85.7% were VeriStrat-Good (overall dataset: 61.6%). Immunohistochemistry data was available for two patients; one overexpressed EGFR (≥10% positive cells; H-score ≥200)

      Conclusion:
      Baseline characteristics of long-term responders to afatinib were similar to the overall dataset. In this sub-group, afatinib conferred a survival benefit of nearly 2 years. Afatinib was well tolerated with predictable and transient AEs that occurred soon after treatment onset. The dataset was too small to identify any clear NGS/VeriStrat predictive signals. Further studies are required to predict long-term response to afatinib.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P2.06 - Poster Session with Presenters Present (ID 467)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Scientific Co-Operation/Research Groups (Clinical Trials in Progress should be submitted in this category)
    • Presentations: 1
    • +

      P2.06-014 - Phase 2 Study of Glesatinib or Sitravatinib with Nivolumab in Non-Small Cell Lung Cancer (NSCLC) after Checkpoint Inhibitor Therapy (ID 4795)

      14:30 - 15:45  |  Author(s): S.M. Gadgeel

      • Abstract
      • Slides

      Background:
      Combination therapy with agents that target the molecular and cellular mechanisms of resistance to checkpoint inhibitor therapy (CIT) is a rational approach to restoring or improving the efficacy of CIT in patients with immunotherapy resistant NSCLC. Glesatinib, a tyrosine kinase inhibitor (TKI), which targets Axl, MER and MET RTKs expressed on macrophages and antigen-presenting-cells within the tumor microenvironment (TME), may reverse the immunosuppressive TME and enhance anti-tumor T and NK cell responses by enhancing antigen presentation and T cell effector function. Sitravatinib, also a TKI, which targets VEGFR2 and KIT as well as Axl, MER and MET, may further enhance anti-tumor activity by VEGFR2 and KIT inhibition mediated reduction of regulatory T cells and myeloid-derived suppressor cells (MDSCs). Given these pleiotropic immune activating effects, the combination of glesatinib or sitravatinib with nivolumab is a rational approach to restoring or enhancing the clinical activity of CIT in patients with immunotherapy resistant NSCLC.

      Methods:
      This open-label Phase 2 study evaluates the tolerability and clinical activity of the investigational agents, glesatinib or sitravatinib in combination with nivolumab in separate cohorts of patients with non-squamous NSCLC who have experienced progression of disease on or after treatment with CIT. The study begins with a limited dose escalation evaluation of each investigational agent in combination with nivolumab to determine the dose levels to be used in Phase 2. The primary objective is to assess the clinical activity of the combination regimens using the Objective Response Rate (ORR) by RECIST 1.1. Other objectives include safety, tolerability, pharmacokinetics and changes in circulating and tumor cell PD-L1, circulating and tumor infiltrating immune cell populations, cytokines and gene expression signatures. Enrollment into each Phase 2 treatment arm is stratified by prior outcome of CIT (e.g., clinical benefit versus progression of disease in ≤12 weeks). The investigational agents are administered orally in continuous regimens; nivolumab is administered intravenously, 3 mg/kg every 2 weeks. The sample sizes for the treatment arms are based on two-stage Simon Optimal Designs. Status: The US IND opened in June 2016.

      Results:
      Section not applicable

      Conclusion:
      Section not applicable

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P3.02a - Poster Session with Presenters Present (ID 470)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Advanced NSCLC
    • Presentations: 1
    • +

      P3.02a-016 - Pooled Efficacy and Safety Data from Two Phase II Studies (NP28673 and NP28761) of Alectinib in ALK+ Non-Small-Cell Lung Cancer (NSCLC) (ID 5044)

      14:30 - 15:45  |  Author(s): S.M. Gadgeel

      • Abstract
      • Slides

      Background:
      Alectinib is an FDA-approved ALK TKI, for treatment of patients with ALK+ metastatic NSCLC who have progressed on, or are intolerant to, crizotinib. Systemic and CNS efficacy was demonstrated in two single-arm, phase II studies (NP28673 [NCT01801111] and NP28761 [NCT01871805]). We report the pooled systemic efficacy and safety analysis of alectinib from 2016 cut-offs 22 January, NP28761 and 1 February, NP28673.

      Methods:
      Patients were ≥18 years, had locally advanced or metastatic ALK+ NSCLC [FDA-approved FISH test] and had progressed on, or were intolerant to, crizotinib. Patients received oral alectinib 600mg twice daily until disease progression, death or withdrawal. The pooled analysis assessed objective response rate (ORR) by an independent review committee (IRC) using RECIST v1.1 (primary endpoint in both studies); disease control rate (DCR); duration of response (DOR); progression-free survival (PFS); overall survival (OS); and safety.

      Results:
      The pooled dataset included 225 patients, (n=138 NP28673; n=87 NP28761). Median age was 53 years, 60% of patients had baseline CNS metastases and 77% had received prior chemotherapy. The response-evaluable (RE) population by IRC included 189 patients (84%). Median follow-up was 18.8 months (0.6–29.7). In the RE population (n=189) ORR by IRC was 51.3% (95% CI 44.0–58.6; all partial responses), a DCR of 78.8% (95% CI 72.3–84.4), with a median DOR of 14.9 months (95% CI 11.1–20.4) after 58% of events. In patients with prior chemotherapy (n=148), IRC ORR was 49.3% (95% CI 41.0–57.7); DCR: 79.1% (95% CI 71.6–85.3); median DOR: 14.9 months (95% CI 11.0–21.9) after 59% of events. In patients who were chemotherapy-naïve (n=41), IRC ORR was 58.5% (95% CI 42.1–73.7); DCR: 78.0% (95% CI 62.4–89.4); median DOR: 11.2 months (95% CI 8.0–NE) after 54% of events. In the total pooled population (n=225) median PFS by IRC was 8.3 months (95% CI 7.0–11.3) after 69% of events and median OS was 26.0 months (95% CI 21.4–NE) after 43% of events. Grade ≥3 adverse events (AEs) occurred in 40% of patients and the most common were dyspnoea (4%), elevated levels of blood creatine phosphokinase (4%) and alanine aminotransferase (3%). The mean dose intensity was 94.6%. Fourteen patients withdrew due to AEs; 20.9% had AEs leading to dose interruptions/modification.

      Conclusion:
      This pooled analysis confirmed alectinib has robust systemic efficacy with a durable response in this population and in patients with or without prior chemotherapy. Alectinib had an acceptable safety profile.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P3.02b - Poster Session with Presenters Present (ID 494)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Advanced NSCLC
    • Presentations: 3
    • +

      P3.02b-003 - Second-Line Afatinib versus Erlotinib for Patients with Squamous Cell Carcinoma of the Lung (LUX-Lung 8): Analysis of Tumour and Serum Biomarkers (ID 5627)

      14:30 - 15:45  |  Author(s): S.M. Gadgeel

      • Abstract
      • Slides

      Background:
      LUX-Lung 8 compared second-line afatinib (40 mg/day; n=398) and erlotinib (150 mg/day; n=397) in patients with stage IIIB/IV squamous cell carcinoma (SCC) of the lung. PFS (median 2.6 vs 1.9 months, HR=0.81 [95% CI, 0.69–0.96], p=0.010) and OS (median 7.9 vs 6.8 months, HR=0.81 [0.69–0.95], p=0.008) were both significantly improved with afatinib versus erlotinib. Here we report exploratory molecular (n=245) and immunohistochemical (n=288) analyses of tumour samples to assess the frequency of short variants (SVs) and copy number alterations (CNAs) in cancer-related genes and whether these tumour genomic alterations, or EGFR expression levels, have clinical utility as prognostic/predictive biomarkers in patients with SCC of the lung. We also assessed the predictive utility of the prospectively validated VeriStrat®, a serum protein test (n=675).

      Methods:
      Archived tumour samples were retrospectively analysed using next-generation sequencing (FoundationOne™). Tumour EGFR expression was assessed by immunohistochemistry; EGFR positivity was defined as staining in ≥10% of cells. Pretreatment serum samples were assigned as VeriStrat-Good or VeriStrat-Poor according to a mass spectrometry signature. Cox regression analysis was used to correlate OS/PFS with genomic alterations (individual or grouped into gene families e.g. ErbB family), EGFR expression levels and VeriStrat status.

      Results:
      The frequency of ErbB family alterations was low (SVs: EGFR 6.5%, HER2 4.9%, HER3 6.1%, HER4 5.7%; CNAs: EGFR 6.9%, HER2 3.7%). No individual genetic alterations, or grouped ErbB family aberrations, were prognostic of OS/PFS. Treatment benefit from afatinib versus erlotinib was consistent in all molecular subgroups. Most tumours were EGFR-positive by immunohistochemistry (afatinib: 82%; erlotinib: 86%). EGFR expression was not predictive of OS or PFS benefit (EGFR-positive PFS: HR=0.76 [0.57‒1.02]; OS: HR=0.84 [0.63‒1.12]; EGFR-negative PFS: HR=0.87 [0.45‒1.68]; OS: HR=0.77 [0.40‒1.51]). In afatinib-treated patients, both PFS (HR=0.56 [0.43‒0.72], p<0.0001) and OS (HR=0.40 [0.31‒0.51], p<0.0001) were improved in the VeriStrat-Good versus the VeriStrat-Poor group. VeriStrat-Good patients had significantly longer OS and PFS when treated with afatinib versus erlotinib (median OS: 11.5 vs 8.9 months, HR=0.79 [0.63‒0.98]; PFS: HR=0.73 [0.59‒0.92]). In VeriStrat-Poor patients there was no significant difference in OS between afatinib and erlotinib (HR=0.90 [0.70‒1.16]). However, there was no significant interaction between treatment arms and VeriStrat classification.

      Conclusion:
      Despite comprehensive, multifaceted analysis, no biomarkers were identified that predicted the benefit with afatinib over erlotinib in patients with SCC of the lung. Afatinib is a treatment option in this setting irrespective of patients’ tumour genetics or EGFR expression levels. However, patient outcome strongly depends on VeriStrat status.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      P3.02b-103 - Identification of On-Target Mechanisms of Resistance to EGFR Inhibitors Using ctDNA Next-Generation Sequencing (ID 5645)

      14:30 - 15:45  |  Author(s): S.M. Gadgeel

      • Abstract
      • Slides

      Background:
      Osimertinib (OSM) is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) recently approved for use in EGFR T790M-positive non-small cell lung cancer (NSCLC) with a 65-70% response rate. However, patients invariably develop resistance to OSM, in ~30% of cases due to an acquired EGFR C797S mutation. Understanding additional, non-C797S resistance mechanisms will be critical to developing new therapeutic approaches. Here, we describe a case of T790M-positive NSCLC with progression on OSM, genotyped using cell-free circulating tumor DNA (ctDNA) next-generation sequencing (NGS).

      Methods:
      A 68-year-old male with EGFR L858R-mutant metastatic NSCLC whose disease progressed despite multiple lines of EGFR inhibitors (erlotinib, afatinib, cetuximab/afatinib) and chemotherapy was found to be T790M-positive, and initiated on OSM. Initial restaging scans demonstrated response. On disease progression 7 months later, ctDNA testing was performed with a highly sensitive and ultra-specific 70-gene NGS panel (Guardant360™) that includes all EGFR exons and reports on all EGFR single nucleotide variants, indels, and amplification.

      Results:
      Twelve somatic alterations were identified, including 7 mutations in EGFR. The original L858R driver mutation was present at a mutant allele fraction (MAF) of 16.9%, and T790M at MAF of 8.4%. C797S was detected at MAF of 4.6%. Four additional subclonal TK domain mutations were identified: L792H (1.4%), L718Q (0.7%), F795C (0.4%) and L792F (0.1%). Mutations within sufficient genomic proximity were phased to determine allelic origin, and a presumptive evolutionary history was constructed. T790M and C797S were in cis, and the F795C mutation arose on that allele. L792H and L792F were in cis to T790M, but arose independently from each other and from C797S. Review of the Guardant Health database, which includes 5,609 NSCLC samples, identified 1,228 samples with EGFR activating mutations L858R and exon 19 deletion. Of these, 341 (28%) had T790M, of which 17 (5%) carried C797S. Sixteen of 17 C797S mutations were in cis with T790M, and 1 in trans. There were 3 additional cases with L718 mutation and 1 with L792.

      Conclusion:
      Deep sequencing of ctDNA can reveal the global landscape and evolution of resistance mutations within a patient’s tumor. The T790M and C797S mutations were predominantly in cis configuration, underscoring the importance of developing new EGFR TKIs. The role of mutations L792H, L792F, and F795C is currently unknown. These mutations impinge on the ATP-binding pocket, which could be a potential structural resistance mechanism. Further studies are needed to validate and functionally characterize these candidate resistance mutations.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      P3.02b-115 - Clinical Activity of Osimertinib in EGFR Mutation Positive Non Small Cell Lung Cancer (NSCLC) Patients (Pts) Previously Treated with Rociletinib (ID 4893)

      14:30 - 15:45  |  Author(s): S.M. Gadgeel

      • Abstract

      Background:
      Both osimertinib and rociletinib were developed to target the EGFR resistance mutation T790M. Sequist, et al reported clinical activity with osimertinib in 9 pts previously treated with rociletinib[1]. We conducted a retrospective analysis at 8 institutions of pts treated with rociletinib, who discontinued the drug due to disease progression or intolerable toxicity and subsequently received osimertinib.

      Methods:
      We identified pts treated with rociletinib followed by osimertinib, as part of osimertinib's US expanded access program or via commercial supply. Clinical characteristics and outcomes were assessed. Frequency of clinical and radiologic assessments on osimertinib was at the discretion of the treating physician. For this retrospective review, reverse KM method was used to calculate the median follow-up; KM method was used for time-to-event endpoints.

      Results:
      45 pts were included in this analysis. Median age at the start of osimertinib was 66 years (43-86) and 71% were female. 28 pts had exon 19 deletions and 16 had L858R. Median duration of therapy on front line EGFR TKI was 18 months (5-54). Median starting dose of rociletinib was 625 mg bid (range 500-1000). The response rate (RR) and disease control rate (DCR; Response+Stable Disease) with rociletinib were 38% and 91%; median duration of rociletinib therapy was 6.2 months. 32 (71%) pts discontinued rociletinib for disease progression. 23 (51%) pts received other therapies (1-4) before starting osimertinib. 25 (56%) pts were known to have brain metastases at osimertinib initiation. RR and DCR with osimertinib were 33% and 82%. DCR in the brain was 88%. With a median follow-up of 7.1 months, median duration of osimertinib therapy in all patients was 8 months (95%CI- 6.6-NR; 64% censored). The 1-year overall survival (OS) rate on osimertinib was 70% (54%-91%). In the 32 pts who discontinued rociletinib due to progression, DCR with osimertinib was 75% and median duration of therapy was 7.8 months (4.6-NR). Neither duration of,or response to rociletinib treatment, nor interval between the two the drugs was associated with duration of osimertinib or OS after osimertinib using a Cox model adjusted for age and sex.

      Conclusion:
      Osimertinib can provide clinical benefit in EGFR mutation positive NSCLC patients previously treated with rociletinib. The clinical activity of osimertinib in these patients may be related to more potent inhibition of T790M mutation or ability to overcome resistance to rociletinib. Reference- 1. Sequist, et al. JAMA Oncology 2016

  • +

    P3.02c - Poster Session with Presenters Present (ID 472)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Advanced NSCLC
    • Presentations: 2
    • +

      P3.02c-011 - A Phase 1b Open-Label Study of PEGPH20 Combined with Pembrolizumab in Patients with Selected Hyaluronan-High Solid Tumors (ID 5081)

      14:30 - 15:45  |  Author(s): S.M. Gadgeel

      • Abstract
      • Slides

      Background:
      Hyaluronan (HA) is a megadalton polysaccharide found in the tumor microenvironment (TME). HA accumulation in the TME increases tumor interstitial pressure, which promotes vascular collapse and limits access of chemotherapy and immune cells to tumor sites. In animal models, HA-High tumors exhibit increased growth and metastasis, treatment resistance, and reduced survival. PEGPH20 is a pegylated recombinant human hyaluronidase that enzymatically degrades tumor HA. Pembrolizumab (PEM) is a humanized monoclonal antibody targeting PD-1 and demonstrating tolerability and activity in patients with non-small cell lung cancer (NSCLC). This study evaluates the safety and activity of PEGPH20 plus PEM in patients with HA-High tumors.

      Methods:
      This is a Phase 1b study comprising a dose escalation portion (up to 30 patients without regard to HA status) followed by a cohort expansion portion in up to 51 patients with HA-High tumors, determined using a companion diagnostic assay developed in collaboration with Ventana Medical Systems. Eligible patients are ≥18 years, ECOG PS 0-1, with either relapsed/refractory stage IIIB/IV NSCLC who failed ≥1 previous platinum-based chemotherapy regimen or relapsed/refractory locally advanced or metastatic gastric adenocarcinoma who failed ≥1 previous chemotherapy regimen. Patients with NSCLC known to be epidermal growth factor receptor (EGFR)- or anaplastic lymphoma kinase (ALK)-positive must have received an EGFR inhibitor or ALK inhibitor, respectively. PEGPH20 (1.6, 2.2, 2.6, 3.0, 4.0 μg/kg) is administered intravenously (IV) over 10 minutes on days 1, 8, and 15 of each 21-day cycle followed by PEM 2 mg/kg IV on day 1, 4 to 6 hours after PEGPH20 is completed. Piroxicam will be given prophylactically for possible musculoskeletal events. Prophylactic proton pump inhibitors will be given to all patients. The primary endpoint for the dose escalation portion is the recommended Phase 2 dose for PEGPH20 in combination with PEM. In the cohort expansion portion, the primary endpoint is objective response rate per RECIST v1.1. Secondary endpoints are duration of response, disease control rate, progression-free survival per RECIST and immune-related response criteria, pharmacokinetics, and adverse events. Exploratory endpoints in patients with HA-High NSCLC include HA levels in plasma and tumor tissue and imaging parameters of tumor blood flow (dynamic contrast-enhanced magnetic resonance imaging [DCE-MRI]) and tumor metabolic activity (positron emission tomography/computed tomography [PET/CT] scans). ClinicalTrials.gov Identifier: NCT02563548.

      Results:
      Section not applicable

      Conclusion:
      Section not applicable

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      P3.02c-024 - Detection of Novel Activating FGFR Rearrangements, Truncations, and Splice Site Alterations in NSCLC by Comprehensive Genomic Profiling (ID 4905)

      14:30 - 15:45  |  Author(s): S.M. Gadgeel

      • Abstract

      Background:
      Activation of the fibroblast growth factor receptor (FGFR) family through mutation, amplification , C-terminal truncation, and 3’ fusion has been described in multiple cancer types, and FGFR inhibitors are currently being evaluated in the clinic. Though FGFR1 amplification has been defined in several datasets, other FGFR alterations in NSCLC are not well defined.

      Methods:
      Hybrid-capture based comprehensive genomic profiling (CGP) was performed on 13,898 consecutive FFPE lung cancer specimens (adeno 71%; squamous 12%) to a mean coverage depth of >650X for 236 or 315 cancer-related genes plus 47 introns from 19 genes frequently rearranged in cancer.

      Results:
      CGP of 13,898 NSCLCs led to the identification of 53 cases (0.4%) with FGFR1-4 rearrangements, truncations or splice site mutations resulting in an intact kinase domain (KD). The median age was 63 years old (range 36-83 years). Patients with these alterations were 60% (26/53) male, and 72% (31/43) with available data were stage IV. 26 patients (49%) had adenocarcinomas and 18 patients (34%) had squamous histology. FGFR alterations identified included 19 FGFR3-TACC3 fusions, one FGFR2-KIAA1598 fusion, and 7 novel fusions involving FGFR2, FGFR3 or FGFR4. We also identified 16 cases with C-terminal truncations resulting in loss of exon 18, but retention of the KD, 9 cases with mutations predicted to result in alternative splicing in the FGFR extracellular domain (exons 3 or 4), and one case with deletion of exons 3-6. Genomic analysis revealed concurrent FGFR amplification in 13% (7/53) of cases. Co-occurring alterations were observed in known drivers including EGFR, ERBB2, MET, and BRAF in 15% of (8/53) cases, and KRAS mutation in an additional 15% (8/53) of cases. The average tumor mutation burden in cases with these FGFR alterations was relatively high (mean 16.9 mutations/Mb, median 10.1 mutations/Mb, range 0.9-86.5 mutations/Mb) as compared to a mean of 9.2 mutations/Mb in NSCLCs. One patient with a novel FGFR2-LZTFL1 fusion had a partial response to the pan-FGFR inhibitor JNJ-42756493 and remained progression free for 11 months.

      Conclusion:
      Diverse FGFR alterations were detected using CGP in 0.4% of NSCLCs. Of the 53 cases identified, 37 (70%) were negative for other known driver alterations. In cases with co-occurring drivers, including two with EGFR exon 19 deletion, the possibility of an FGFR fusion arising in the setting of acquired resistance will be evaluated. One patient with a novel FGFR2 fusion had clinical benefit from an investigational FGFR inhibitor, suggesting that these alterations may predict response to targeted therapies.

  • +

    PL04a - Plenary Session: Immune Checkpoint Inhibitors in Advanced NSCLC (ID 430)

    • Event: WCLC 2016
    • Type: Plenary
    • Track: Chemotherapy/Targeted Therapy/Immunotherapy
    • Presentations: 1
    • +

      PL04a.02 - OAK, a Randomized Ph III Study of Atezolizumab vs Docetaxel in Patients with Advanced NSCLC: Results from Subgroup Analyses (Abstract under Embargo until December 7, 7:00 CET) (ID 5822)

      08:45 - 09:40  |  Author(s): S.M. Gadgeel

      • Abstract
      • Presentation
      • Slides

      Background:
      Atezolizumab inhibits PD-L1 binding to its receptors PD-1 and B7.1, thereby restoring tumor-specific T-cell immunity. Primary analysis of the Phase III OAK study in previously-treated NSCLC revealed superior survival for atezolizumab vs docetaxel in the ITT population (mOS, 13.8 vs 9.6 months; HR, 0.73) and in patients expressing ≥1% PD-L1 on TC or IC (TC1/2/3 or IC1/2/3; mOS, 15.7 vs 10.3; HR, 0.74). Here we present further subgroup analyses.

      Methods:
      OAK evaluated atezolizumab vs docetaxel in an unselected NSCLC population who had failed prior platinum-containing chemotherapy. Patients were stratified by PD-L1 expression, prior chemotherapy regimens and histology, and randomized 1:1 to atezolizumab (1200 mg) or docetaxel (75 mg/m[2]) IV q3w. PD-L1 expression by IHC and mRNA was centrally evaluated by VENTANA SP142 IHC assay and Fluidigm, respectively. Data cutoff, July 7, 2016.

      Results:
      For the first 850 of 1225 randomized patients (primary study population), OS was improved with atezolizumab vs docetaxel regardless of histology and this benefit was observed across PD-L1 subgroups within each histology (Table). PD-L1 gene expression showed a similar association with OS as PD-L1 IHC. In nonsquamous patients ORR was 14.4% vs 15.2%; in squamous patients ORR was 11.6% vs 8.2% (atezolizumab vs docetaxel). OS benefit vs docetaxel was seen across subgroups including patients with treated baseline brain metastases (n=85; mOS 20.1 vs 11.9 mo; HR 0.54, 95% CI 0.63-0.89) and never smokers (n=156; mOS 16.3 vs 12.6 mo, HR 0.71, 95% CI 0.47-1.08). Further secondary endpoints and exploratory biomarker analyses for these subgroups and by age and EGFR/KRAS status will be presented.

      Conclusion:
      OAK demonstrated clinically relevant improvements with atezolizumab in the ITT population, including in both histology subgroups regardless of PD-L1 expression (measured by IHC or tumor gene expression), and among other subgroups including never smokers and in patients with baseline brain metastases.

      OS
      Atezolizumab Docetaxel HR[a]95% CI
      n Median, mo n Median, mo
      Nonsquamous
      TC3 or IC3 49 22.5 47 8.7 0.35(0.21-0.61)
      TC2/3 or IC2/3 89 18.7 99 11.3 0.61(0.42-0.88)
      TC1/2/3 or IC1/2/3 171 17.6 162 11.3 0.72(0.55-0.95)
      TC0 and IC0 140 14.0 150 11.2 0.75(0.57-1.00)
      All 313 15.6 315 11.2 0.73(0.60-0.89)
      Squamous
      TC3 or IC3 23 17.5 18 11.6 0.57(0.27-1.20)
      TC2/3 or IC2/3 40 10.4 37 9.7 0.76(0.45-1.29)
      TC1/2/3 or IC1/2/3 70 9.9 60 8.7 0.71(0.48-1.06)
      TC0 and IC0 40 7.6 49 7.1 0.82(0.51-1.32)
      All 112 8.9 110 7.7 0.73(0.54-0.98)
      [a]Unstratified HRs. TC=tumor cell, IC=tumor-infiltrating immune cell


      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    PR04 - Press Conference: Advanced Care (ID 404)

    • Event: WCLC 2016
    • Type: Press Conference
    • Track:
    • Presentations: 1
    • +

      PR04.02 - OAK, a Randomized Ph III Study of Atezolizumab vs Docetaxel in Patients with Advanced NSCLC: Results from Subgroup Analyses (ID 7214)

      10:30 - 11:45  |  Author(s): S.M. Gadgeel

      • Abstract
      • Presentation
      • Slides

      Abstract not provided

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.