Virtual Library

Start Your Search

S.N. Gettinger



Author of

  • +

    MA15 - Immunotherapy Prediction (ID 400)

    • Event: WCLC 2016
    • Type: Mini Oral Session
    • Track: Chemotherapy/Targeted Therapy/Immunotherapy
    • Presentations: 1
    • +

      MA15.06 - Predictive Value of Measuring Somatic Mutations and Tumor Infiltrating Lymphocytes for PD-1 Axis Therapy in Non-Small Cell Lung Cancer (NSCLC) (ID 6255)

      14:20 - 15:50  |  Author(s): S.N. Gettinger

      • Abstract
      • Slides

      Background:
      Diverse factors have been associated with clinical benefit to PD-1 axis blockers in NSCLC including PD-L1 protein expression by immunohistochemistry and increased mutation load/predicted class-I neoantigens. However, the association and predictive value of the tumor genomic landscape, composition of the tumor immune microenvironment and T-cell function remain unclear.

      Methods:
      We performed whole exome DNA sequencing and multiplexed quantitative immunofluorescence (QIF) for T-cells in pre-treatment FFPE samples from 45 NSCLC patients treated with PD-1 axis blockers (alone or in combination) in our institution. Genomic analysis was used to evaluate the mutational load and predicted class-I neoantigens. Multiplexed QIF-based immunoprofiling was used to measure the level of CD3+ tumor infiltrating lymphocytes (TILs), in situ T-cell proliferation (Ki-67 in CD3+ cells) and T-cell activation (Granzyme-B in CD3+ cells). We studied the association between the tumor somatic mutations, predicted neoantigens, T-cell infiltration/function and clinical benefit /survival.

      Results:
      Increased mutational load was positively associated with predicted class-I neoantigens, variants in DNA-repair genes, smoking and absence of activating mutations in EGFR; but not associated with the level of CD3+ T-cells, T-cell proliferation (Ki-67 in CD3+ cells) and function (Granzyme-B in CD3+ cells). Increased mutations and candidate class-I neoantigens were significantly associated with response to therapy (P=0.02 and 0.03, respectively), but not with overall survival at 3-years (median cut-point, log rank P=0.92 and 0.80, respectively). Higher CD3 positivity was not associated with response to therapy (P=0.17), but was significantly associated with overall survival (median cut-point, log rank P=0.03). Regardless of the mutational load and candidate neoantigen content, elevated CD3 with low Ki-67/Granzyme-B in CD3 predicted longer survival after PD-1 axis blockade than high CD3/high Ki-67/Granzyme-B in CD3, or low T-lymphocyte infiltration.

      Conclusion:
      Increased somatic mutations are associated with smoking and response to PD-1 agents, but not with tumor T-cell infiltration/activation and overall survival. Regardless of the mutational load, increased T-cell infiltration using QIF is significantly associated with longer survival after PD-1 axis blockade in NSCLC. The subgroup of NSCLC with the highest potential of benefit to immune reinvigoration using PD-1 axis blockade comprise tumors with elevated lymphocyte infiltration but low in situ activation/proliferation.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MA16 - Novel Strategies in Targeted Therapy (ID 407)

    • Event: WCLC 2016
    • Type: Mini Oral Session
    • Track: Chemotherapy/Targeted Therapy/Immunotherapy
    • Presentations: 2
    • +

      MA16.02 - Mutational Landscape of TKI Naïve and Resistant EGFR Mutant Lung Adenocarcinomas (ID 5777)

      14:20 - 15:50  |  Author(s): S.N. Gettinger

      • Abstract
      • Presentation
      • Slides

      Background:
      The identification and development of tyrosine kinase inhibitors (TKIs) targeting the epidermal growth factor receptor (EGFR) have revolutionized and greatly improved the treatment of EGFR-mutant non-small cell lung cancer (NSCLC). Unfortunately, acquired resistance (AR) to these agents remains a major clinical problem hindering durable responses. Although significant work has been done to identify particular mechanisms of acquired resistance, little is known regarding the global mutational landscape of EGFR mutant tumors before therapy or at the manifestation of acquired resistance.

      Methods:
      Using specimens obtained in the IRB approved, Yale Lung Rebiopsy program, we completed whole exome sequencing of 15 EGFR mutant tumors with paired tissue obtained pre-treatment and at the time of AR to EGFR TKIs. An additional 5 unpaired AR samples were also analyzed. The mutational burden and copy number profile of the specimens were studied.

      Results:
      We found that the mutational burden of pre-treatment EGFR mutant tumors varies widely between tumors. TKI treatment, however, does not significantly alter the overall or non-synonymous mutation load at AR. Interestingly, EGFR[L858R]tumors had a significantly higher mutation burden at acquired resistance to EGFR TKIs than EGFR[Δ19] tumors. The higher mutation burden in EGFR[L858R] tumors compared to those harboring EGFR[Δ19 ]mutations was further confirmed through analysis of TCGA data. Recurrently altered genes shared in the pre- and AR specimens include TP53, EGFR and AKT1. Alterations in EGFR (T790M), MYCBP2, WHSC1L1, AXL, MET, HGF, MYC and NTRK1 were found at exclusively at AR.

      Conclusion:
      Collectively, these data provide valuable insight into the mutational landscape of EGFR mutant NSCLCs as they evolve on TKIs and identify potential resistance candidate genes for further investigation.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MA16.10 - Lung-MAP (S1400) Lung Master Protocol: Accrual and Genomic Screening Updates (ID 3995)

      14:20 - 15:50  |  Author(s): S.N. Gettinger

      • Abstract
      • Presentation
      • Slides

      Background:
      Lung-MAP (S1400), is a master protocol that incorporates genomic testing of tumors through a next generation sequencing (NGS) platform (Foundation Medicine) and biomarker-driven (matched) therapies for patients with squamous cell lung cancer (SCCA) after progression on first-line chemotherapy.

      Methods:
      The Lung-MAP trial, activated June 16, 2014, includes 3 matched- and 1 non-match study. Matched studies include: S1400B evaluating taselisib, a PI3K inhibitor, S1400C evaluating palbociclib, a CDK 4/6 inhibitor and, S1400D evaluating AZD4547, an FGFR inhibitor. The non-match study S1400I tests nivolumab + ipilimumab vs. nivolumab. Two studies have closed: S1400E evaluating rilotumumab an HGF monoclonal antibody + erlotinib closed 11/26/2014 and S1400A evaluating MEDI4736 in non-match pts, closed 12/18/2015.

      Results:
      From June 16, 2014 to June 15, 2016, 812 pts were screened and 292 pts registered to a study: 116 to S1400A, 27 to S1400B, 53 to S1400C, 32 to S1400D, 9 to S1400E and 55 to S1400I. Demographics: Screening was successful for 705 (87%) of screened eligible pts. Median age 67 (range 35-92); male 68%; ECOG PS 0-1 88%, PS 2 10%; Caucasian 85%, Black 9%, other 5%; never/former/current smokers 4%/58%/36%. Table 1 displays biomarker prevalence; 39% of pts matched; 33.9%, 4.8%, and 0.3% with 1, 2, and all 3 biomarkers, respectively. Tumor mutation burden (TMB) was available for 636 (90.4%) of eligible pts. The distribution of TMB is: 126 (19.8%) low (≤5 mutations Mb), 415 (65.1%) intermediate (6-19 mutations/Mb), and 96 (15.1%) high (≥20 mutations/Mb). The median TMB was 10.1.

      Conclusion:
      Genomic screening is feasible as part of this master protocol designed to expedite drug registration, confirm anticipated prevalence of targeted alterations in SCCA and reveal intermediate or high TMB in most (80.2%) pts. Treatment results are not yet available as patients continue to accrue. Clinical trial information: NCT02154490

      Total FGFR CDK PIK3CA
      FGFR (15.9%) 12.9% 2.4% 0.6%
      CDK (18.8%) 14.6% 1.8%
      PIK3CA (8.8%) 6.4%
      Biomarker prevalence and overlap.


      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    OA03 - Immunotherapy Checkpoint Inhibitors in Advanced NSCLC (ID 367)

    • Event: WCLC 2016
    • Type: Oral Session
    • Track: Chemotherapy/Targeted Therapy/Immunotherapy
    • Presentations: 2
    • +

      OA03.01 - First-Line Nivolumab Monotherapy and Nivolumab plus Ipilimumab in Patients with Advanced NSCLC: Long-Term Outcomes from CheckMate 012 (Abstract under Embargo until December 5, 7:00 CET) (ID 5364)

      11:00 - 12:30  |  Author(s): S.N. Gettinger

      • Abstract
      • Presentation
      • Slides

      Background:
      Nivolumab, a programmed death 1 (PD-1) immune checkpoint inhibitor antibody, has demonstrated improved efficacy and tolerability vs docetaxel in patients with advanced NSCLC that progressed on or after platinum-based chemotherapy and is approved in >50 countries in this patient population. We report efficacy and safety data from a phase 1 study (CheckMate 012; NCT01454102) evaluating first-line nivolumab in patients with advanced NSCLC.

      Methods:
      Patients (N=52) with advanced, chemotherapy-naive NSCLC (any histology) were treated with nivolumab monotherapy at 3 mg/kg IV Q2W until disease progression or unacceptable toxicity. Safety and tolerability was the primary study objective. Efficacy, as measured by objective response rate (ORR) and 24-week progression-free survival (PFS) rate per RECIST v1.1, was the secondary objective. Overall survival (OS) was an exploratory endpoint.

      Results:
      Treatment-related adverse events (TRAEs) were reported in 71% (any grade) and 19% (grade 3‒4) of patients. The most frequent select TRAEs (those with potential immunologic causes) by category were skin, endocrine, and gastrointestinal (Table). With a median follow-up of 14.3 months (range, 0.2 to 30.1), the confirmed ORR was 23% (12/52) and 8% (4/52) of patients had complete responses. Of the 12 responses, 8 (67%) were ongoing at the time of database lock; median duration of response was not reached. Median OS was 19.4 months (range, 0.2‒35.8+). The 24-week PFS rate was 41% (95% CI: 27‒54); 18-month OS rate was 57% (95% CI: 42‒70). Updated long-term data will be presented, including 2-year OS and will represent the longest follow-up to date for a PD-1/PD-L1 inhibitor for first-line advanced NSCLC. Updated data from patients treated with nivolumab plus ipilimumab (N = 77) will also be presented.

      Nivolumab monotherapy (N=52)
      Safety
      Any grade / grade 3‒4 TRAEs,[a] n (%) 37 (71) / 10 (19)
      Any grade / grade 3‒4 select TRAEs,[a,b] by category (≥10% of patients), n (%)
      Skin 13 (25) / 2 (4)
      Endocrine 7 (14) / 0 (0)
      Gastrointestinal 6 (12) / 1 (2)
      Any grade / grade 3‒4 TRAEs leading to discontinuation, n (%) 6 (12) / 6 (12)
      Efficacy
      Confirmed ORR,[c] n (%) [95% CI] 12 (23) [13‒37]
      CR 4 (8)
      PR 8 (15)
      SD 14 (27)
      PD 20 (38)
      Unable to determine[d] 6 (12)
      Median DOR, mo (range) NR (4.2‒25.8+)
      Ongoing responders, n/N (%) 8/12 (67)
      Median PFS, mo (range) 3.6 (<0.1+‒28.0+)
      24-week PFS, % (95% CI) 41 (27‒54)
      Median OS, mo (range) 19.4 (0.2‒35.8+)
      1-year OS, % (95% CI) 73 (59‒83)
      18-month OS, % (95% CI) 57 (42‒70)
      Efficacy and safety analyses, except for OS, were based on a March 2015 database lock; OS analyses were based on an August 2015 database lock.[a]No grade 5 events were reported.[b]AEs with a potential immunologic cause.[c]Includes patients with initial observations of CR and PR that were subsequently confirmed by repeat scans performed no earlier than 4 weeks after the original observation.[d]Includes patients who discontinued therapy because of disease progression before first assessment or patients only with assessments suggestive of, but that did not satisfy, the required minimum duration for SD. CR = complete response; PR = partial response; SD = stable disease; PD = progressive disease; DOR = duration of response; NR = not reached.


      Conclusion:
      First-line nivolumab monotherapy in patients with advanced NSCLC had a similar safety profile as previously reported in second-line NSCLC and other tumors, was well tolerated, and demonstrated durable efficacy.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      OA03.02 - Atezolizumab as 1L Therapy for Advanced NSCLC in PD-L1–Selected Patients: Updated ORR, PFS and OS Data from the BIRCH Study (ID 4799)

      11:00 - 12:30  |  Author(s): S.N. Gettinger

      • Abstract
      • Presentation
      • Slides

      Background:
      Atezolizumab, a humanized anti-PDL1 mAb, inhibits the PD-L1/PD-1 pathway to restore tumor-specific T-cell immunity, resulting in durable anti-tumor effects. BIRCH (NCT02031458) is a single-arm Phase II study of atezolizumab monotherapy in PD-L1–selected advanced NSCLC patients, across multiple therapy lines. Primary analyses (median follow-up, 8.5 months) demonstrated a meaningful ORR with durable response in chemotherapy-naive 1L and 2L+ PD-L1–selected patients. Here we report updated efficacy data in 1L patients.

      Methods:
      1L eligibility criteria included PD-L1–selected, advanced-stage NSCLC with no CNS metastases or prior chemotherapy. PD-L1 was centrally evaluated (VENTANA SP142 IHC assay). Patients expressing PD-L1 on ≥5% of tumor cells (TC) or tumor-infiltrating immune cells (IC), ie, TC2/3 or IC2/3, were enrolled. Patients with EGFR mutation or ALK rearrangement must have had prior TKI treatment. Atezolizumab 1200mg was administered IV q3w until radiographic disease progression or unacceptable toxicity. The primary endpoint was independent review facility(IRF)-assessed ORR. Secondary endpoints included investigator(INV)-assessed ORR, DOR, PFS (RECIST v1.1) and OS.

      Results:
      With a median follow-up of 14.6 months, median OS was not reached in TC3 or IC3 patients and was 20.1 months in TC2/3 or IC2/3 (ITT) patients; INV-assessed ORR was 32% and 24%, respectively (Table). Furthermore, ORR was 31% for mutant EGFR (n=13) vs 20% for wild-type EGFR patients (n=104), and 27% for mutant KRAS (n=33) vs 21% for wild-type KRAS patients (n=67). No new safety signals were observed. Updated efficacy (including IRF ORR), safety and exploratory biomarker analyses will be presented.

      Conclusion:
      With longer follow-up, atezolizumab continued to demonstrate promising efficacy in 1L NSCLC. These results indicate that atezolizumab has durable efficacy in the 1L setting, in EGFR and KRAS mutant and wild-type tumors, and support ongoing Phase III trials evaluating atezolizumab vs chemotherapy in 1L NSCLC.

      Endpoint(95% CI) TC3 or IC3[a](n=65) TC2/3 or IC2/3[b](n=139)
      INV ORR, % 32% (21.2–45.1) 24% (16.9–31.7)
      EGFR mutant/wild-type, % 25%/29% 31%/20%
      KRAS mutant/wild-type, % 38%/27% 27%/21%
      mDOR, mo 13.1 (8.5–NE) 13.1 (9.9–17.5)
      mOS, mo NE (12.0–NE) 20.1 (20.1–NE)
      12-mo OS rate, % 61% (48.8–73.8) 66% (57.9–74.5)
      mPFS, mo 7.3 (4.9–12.0) 7.3 (5.6–9.1)
      12-mo PFS rate, % 36% (23.8–48.8) 32% (24.0–40.7)
      NE, not estimable.[a ]TC ≥50% or IC ≥10% PD-L1–expressing cells.[b ]TC or IC ≥5% PD-L1–expressing cells.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    OA08 - Targeted Therapies in Brain Metastases (ID 381)

    • Event: WCLC 2016
    • Type: Oral Session
    • Track: Advanced NSCLC
    • Presentations: 1
    • +

      OA08.06 - Brigatinib Activity in Patients with ALK+ NSCLC and Intracranial CNS Metastases in Two Clinical Trials (ID 4374)

      16:00 - 17:30  |  Author(s): S.N. Gettinger

      • Abstract
      • Presentation
      • Slides

      Background:
      Patients treated with crizotinib often experience disease progression in the brain. Brigatinib, an investigational next-generation ALK inhibitor, is being evaluated in an ongoing phase 1/2 trial (Ph1/2) and an ongoing pivotal phase 2 trial (ALTA).

      Methods:
      In Ph1/2, patients with advanced malignancies, including ALK+ NSCLC, received 30–300 mg brigatinib per day. In ALTA, patients with crizotinib-resistant advanced ALK+ NSCLC received 90 mg qd (arm A) or 180 mg qd with a 7-day lead-in at 90 mg (arm B). Efficacy (in both trials) and safety (in ALTA) are reported for ALK+ NSCLC patients with brain metastases at baseline.

      Results:
      In Ph1/2 and ALTA, 50/79 (63%; IRC-assessed) and 154/222 (69%; investigator-assessed) of ALK+ NSCLC patients, respectively, had baseline brain metastases. In Ph1/2 (n=50), median age was 53 years, 76% received prior chemotherapy, and 8% were crizotinib-naive. In ALTA (n=154), median age was 52 years; 75% received prior chemotherapy. As of November 16, 2015, 25/50 (50%) patients were receiving brigatinib in Ph1/2; as of February 29, 2016, 101/154 (66%) patients were receiving brigatinib in ALTA. For patients with measurable lesions, confirmed iORR was 53% in Ph1/2 and 42%/67% in ALTA A/B (Table). Among patients with only nonmeasurable lesions (Ph1/2, n=31; ALTA A/B, n=54/n=55), 35% had confirmed complete resolution of lesions in Ph1/2; 7%/18% had confirmed complete resolution in ALTA A/B. For all evaluable patients with baseline brain metastases, median intracranial PFS was 15.6 months in Ph1/2 (n=46) and 15.6/12.8 months in ALTA A/B (n=80/n=73). Most common treatment-emergent adverse events in ALTA in patients with baseline brain metastases (n=151 treated): nausea (A/B, 32%/43%), headache (30%/30%), diarrhea (18%/36%), cough (21%/30%), vomiting (25%/26%); grade ≥3 (excluding neoplasm progression): increased blood CPK (1%/11%), hypertension (4%/7%), increased lipase (3%/3%), pneumonia (1%/4%).

      Conclusion:
      Brigatinib has demonstrated substantial clinical activity in ALK+ NSCLC patients with brain metastases in both Ph1/2 and ALTA.

      IRC-Assessed Confirmed Intracranial Response Rates for Patients With Measurable Brain Metastases at Baseline
      Any No rad/active[a]
      Ph1/2[b] n=15 n=9
      iORR 8(53) 6(67)
      iDCR 13(87) 8(89)
      ALTA[c]
      Arm A n=26 n=19
      iORR 11(42) 8(42)
      iDCR 22(85) 16(84)
      Arm B n=18 n=15
      iORR 12(67) 11(73)
      iDCR 15(83) 14(93)
      Data are n(%) iDCR=intracranial disease control rate iORR=intracranial objective response rate IRC=independent review committee [a]No prior brain radiotherapy (Ph1/2); active (untreated or treated and progressed) brain lesions (ALTA) [b]NCT01449461; last scan date: October 8, 2015 [c]NCT02094573; last scan date: April 14, 2016


      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P3.02a - Poster Session with Presenters Present (ID 470)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Advanced NSCLC
    • Presentations: 1
    • +

      P3.02a-013 - Brigatinib in Crizotinib-Refractory ALK+ NSCLC: Central Assessment and Updates from ALTA, a Pivotal Randomized Phase 2 Trial (ID 4046)

      14:30 - 15:45  |  Author(s): S.N. Gettinger

      • Abstract
      • Slides

      Background:
      Brigatinib, an investigational next-generation ALK inhibitor, has yielded promising activity in crizotinib-treated ALK+ NSCLC patients in a phase 1/2 trial (NCT01449461). As responses and adverse events (AEs) varied with starting dose, two brigatinib regimens are under evaluation in ALTA (NCT02094573).

      Methods:
      Patients with crizotinib-refractory advanced ALK+ NSCLC were randomized 1:1 to receive brigatinib at 90 mg qd (arm A) or 180 mg qd with a 7-day lead-in at 90 mg (arm B) and stratified by presence of brain metastases at baseline and best response to prior crizotinib. Primary endpoint was investigator-assessed confirmed ORR per RECIST v1.1.

      Results:
      222 patients were enrolled (arm A, n=112/arm B, n=110). Median age (A/B) was 51/57 years, 55%/58% were female, 74%/74% previously received chemotherapy, and 71%/67% had brain metastases. As of February 29, 2016, 64/112 (57%) patients in arm A and 76/110 (69%) patients in arm B were receiving brigatinib; median follow-up was 7.8/8.3 months. The Table shows investigator-assessed endpoints by arm and subgroup for select baseline characteristics. Independent review committee–assessed endpoints (A/B, n=112/n=110; as of May 16, 2016): confirmed ORR 48%/53%, median PFS 9.2/15.6 months. Any-grade treatment-emergent AEs (≥25% overall frequency; A/B, n=109/n=110 treated): nausea (33%/40%), diarrhea (19%/38%), headache (28%/27%), cough (18%/34%); grade ≥3 events (excluding neoplasm progression; ≥3% frequency): hypertension (6%/6%), increased blood CPK (3%/9%), pneumonia (3%/5%), increased lipase (4%/3%). A subset of pulmonary AEs with early onset (median onset: Day 2) occurred in 14/219 (6%) treated patients (3%, grade ≥3); 7/14 patients were successfully retreated. No such events occurred after escalation to 180 mg in arm B.

      Conclusion:
      In each arm, brigatinib yielded substantial responses and prolonged PFS, with an acceptable safety profile. 180 mg with 90 mg lead-in was not associated with increased early pulmonary events and showed a consistent improvement in efficacy, compared with 90 mg, particularly with respect to PFS.

      Investigator-Assessed Endpoints by Arm and Subgroup
      Confirmed ORR, n/N(%) Median PFS, months
      Arm A B A+B A B A+B
      All patients 50/112(45) 59/110(54) 109/222(49) 9.2 12.9 11.1
      Prior chemotherapy
      Yes 35/83(42) 44/81(54) 79/164(48) 8.8 12.9 11.8
      No 15/29(52) 15/29(52) 30/58(52) 9.2 8.1 9.2
      Race
      Asian 18/39(46) 18/30(60) 36/69(52) 8.8 11.1 11.1
      Non-Asian 32/73(44) 41/80(51) 73/153(48) 9.2 12.9 11.8
      Brain metastases at baseline
      Yes 31/80(39) 43/74(58) 74/154(48) 9.2 11.8 11.1
      No 19/32(59) 16/36(44) 35/68(51) 7.4 15.6 15.6
      Best response to prior crizotinib
      Partial+complete 36/71(51) 47/73(64) 83/144(58) 11.1 15.6 15.6
      Other 14/41(34) 12/37(32) 26/78(33) 7.4 12.9 9.2
      ORR=objective response rate PFS=progression-free survival


      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P3.02c - Poster Session with Presenters Present (ID 472)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Advanced NSCLC
    • Presentations: 2
    • +

      P3.02c-046 - Safety, Clinical Activity and Biomarker Results from a Phase Ib Study of Erlotinib plus Atezolizumab in Advanced NSCLC (ID 5215)

      14:30 - 15:45  |  Author(s): S.N. Gettinger

      • Abstract

      Background:
      Targeted therapy with erlotinib is effective in reducing tumor burden in EGFR-mutant non-small cell lung cancer (NSCLC). However, resistance to therapy develops almost universally. Atezolizumab, an engineered mAb that inhibits binding of PD-L1 to its receptors, PD-1 and B7.1, has demonstrated promising monotherapy activity in NSCLC. Given that atezolizumab may enhance and perpetuate anti-tumor immunity, we hypothesized that combining atezolizumab with erlotinib may improve both clinical response and durability in EGFR-mutant NSCLC.

      Methods:
      This Phase Ib study consisted of a safety-evaluation stage in patients with NSCLC regardless of EGFR status followed by an expansion stage in TKI-naïve patients with tumors harboring activating EGFR mutations. Patients were enrolled regardless of PD-L1 status. After a 7-day run-in with 150mg erlotinib PO QD alone, patients received 150mg erlotinib PO QD and 1200mg atezolizumab IV q3w. To evaluate immune biology, biopsies were obtained in expansion-stage patients pre-treatment, after erlotinib run-in, at weeks 4-6, and at progression. The primary objective was to evaluate the safety and tolerability of the combination. Secondary objectives included evaluation of the clinical activity per RECIST v1.1. Data cutoff, 11 April 2016.

      Results:
      Twenty-eight patients (safety stage, n = 8; expansion stage, n = 20) who received ≥ 1 dose of erlotinib or atezolizumab were considered safety evaluable. Median age was 61y (range, 47-84); median survival follow-up was 11.2mo (range, 0.8-24.2). The incidence of either treatment-related G3-4 AEs was 39% and for serious AEs, 50%. The most common atezolizumab-related G3-4 AEs were pyrexia and increased ALT. No pneumonitis was reported. No treatment-related G5 AEs occurred. Five patients discontinued atezolizumab due to treatment-emergent AEs. No DLTs were observed. In the expansion-stage population, ORR was 75% (95% CI, 51-91). Disease control rate (CR + PR + SD ≥ 24 weeks) was 90% (95% CI, 68-99), median PFS was 11.3mo (95% CI, 8.4-NE) and median DOR was 9.7mo (range, 4.2-11.7). Increases in intratumoral CD8+ T cells post-erlotinib run-in were observed in 8/13 evaluable paired biopsies. Higher intratumoral CD8+ T-cell prevalence and immune gene expression signatures at baseline were associated with improved PFS.

      Conclusion:
      The combination of full dose erlotinib plus atezolizumab demonstrated a manageable safety profile. While response rates and median PFS for combination treatment appear similar to those observed with erlotinib monotherapy, the addition of atezolizumab to erlotinib may lead to more durable clinical responses in some patients. Additional follow-up is required to evaluate the full potential of this combination treatment. NCT02013219

    • +

      P3.02c-088 - Acquired Resistance to Programmed Death-1 Axis Inhibitors in Non-Small Cell Lung Cancer (NSCLC) (ID 5625)

      14:30 - 15:45  |  Author(s): S.N. Gettinger

      • Abstract

      Background:
      Programmed death-1 (PD-1) axis inhibitors are increasingly being used to treat patients with advanced NSCLC. Despite durable responses relative to chemotherapy, resistance to such therapy develops in the majority of responders, with median duration of response from 12-17 months. Mechanisms of acquired resistance (AR) to PD-1 axis inhibitors are poorly understood.

      Methods:
      Patients with advanced NSCLC and acquired resistance (AR) to PD-1 axis inhibitor therapy were enrolled to an IRB approved repeat biopsy protocol allowing collection of clinical data, archived and fresh tumor tissue, and blood for analysis. Molecular analyses including whole exome sequencing of pre- and post-treatment tumor specimens were performed.

      Results:
      Twelve cases were available for analysis (table 1). Eight and two patients developed resistance limited to lymph nodes (LNs) and adrenal gland respectively. The two remaining patients experienced tumor progression in LNs with other sites of tumor growth (one in liver, one in lung). Nine patients had sufficient archived pre- PD-1 axis inhibitor tumor tissue for analysis/ comparison, leaving three unpaired cases. Genomic analysis of tumor specimens identified two patients with acquired tumor beta-2-microglobulin (B2M) defects at resistance. A patient derived xenograft generated from one of the resistance samples (patient #6) lacked production of B2M protein and did not express surface MHC-1. Additional analyses including immunophenotyping with multiplexed quantitative immunofluorescence on these and other patient samples are ongoing. Figure 1



      Conclusion:
      Lymph nodes may be a particularly susceptible area to AR to PD-1 axis inhibitors. Defects in B2M leading to loss of tumor MHC-1 presentation may represent a unique mechanism of AR to immune checkpoint inhibitors. Further studies to determine the frequency of defects in antigen presentation machinery in tumors with resistance to PD1 axis inhibitors are warranted.