Virtual Library

Start Your Search

M. Williams



Author of

  • +

    OA02 - Novel Targets and Biomarkers in Malignant Pleural Mesothelioma (ID 369)

    • Event: WCLC 2016
    • Type: Oral Session
    • Track: Mesothelioma/Thymic Malignancies/Esophageal Cancer/Other Thoracic Malignancies
    • Presentations: 1
    • +

      OA02.01 - The microRNA-15/16 Family Regulates Tumour Cell Growth via Fibroblast Growth Factor Signals in Malignant Pleural Mesothelioma (ID 5395)

      11:00 - 12:30  |  Author(s): M. Williams

      • Abstract
      • Presentation
      • Slides

      Background:
      Malignant pleural mesothelioma (MPM) is a highly aggressive, asbestos-related malignancy characterized by poor outcome and limited therapeutic options. Fibroblast growth factor (FGF) signals play important roles in mesothelioma cell growth and malignant behavior and their inhibition leads to reduced tumor growth. MicroRNAs (miRNAs) are conserved noncoding RNAs controlling gene expression via translational repression of target mRNAs. The miR-15/16 family is downregulated in MPM and has tumor suppressor functions. Several FGFs/FGFRs are predicted miR-15/16 targets. The aim of this study was to explore the link between the miR-15/16 and the FGF/R family in MPM.

      Methods:
      Gene and microRNA expression was determined by RT-qPCR or Taqman Low Density Arrays (TLDAs). Mimics were used for restoring microRNA expression. Stimulation or inhibition of FGF signals or bcl-2 was achieved by recombinant FGF2, siRNAs, or small-molecule inhibitors, respectively. A SYBR green-based proliferation assay and colony formation assays were used to monitor effects on cell growth.

      Results:
      Expression analysis showed a consistent downregulation of target FGF/FGFR genes after transfection with miRNA mimics. Restoration of miR-15/16 led to dose-dependent growth inhibition, which significantly correlated with sensitivity to the specific FGFR1 inhibitor PD166866. Re-expression of microRNAs in combination with FGFR knock-down or pharmacological inhibition resulted in reduced activity, indicating target competition. Combined inhibition of the FGF-axis and bcl-2, another established target of miR-15/16, resulted in enhanced activity. Treatment with recombinant FGF2 further reduced mature as well as pri-microRNA levels and also could prevent/reduce growth inhibition by mimics, but only when added within 24 hours after transfection. TLDA screens after stimulation/inhibition of FGF signals identified regulation of several other miRNAs involved in pathways relevant for tumour growth and aggressiveness.

      Conclusion:
      Our data shows that the post-transcriptional repression of FGF-mediated signals contributes to the tumour-suppressor function of the microRNA-15/16 family. Impairing hyperactivated FGF signals as well as the anti-apoptotic protein bcl-2 through the restoration of this miRNA family might serve as a novel therapeutic strategy in mesothelioma.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P3.03 - Poster Session with Presenters Present (ID 473)

    • Event: WCLC 2016
    • Type: Poster Presenters Present
    • Track: Mesothelioma/Thymic Malignancies/Esophageal Cancer/Other Thoracic Malignancies
    • Presentations: 1
    • +

      P3.03-007 - miR-137 Acts as a Tumour Suppressor via the Down-Regulation of YB-1 in Malignant Pleural Mesothelioma (ID 5579)

      14:30 - 15:45  |  Author(s): M. Williams

      • Abstract
      • Slides

      Background:
      Malignant pleural mesothelioma (MPM) continues to increase in incidence worldwide and has limited therapeutic options. MPM displays characteristic changes in gene expression, including noncoding RNAs such as microRNAs, which have potential therapeutic relevance. One such miRNA is miR-137, a tumour suppressor whose promoter region is frequently methylated in other cancers and lies in in a commonly deleted chromosomal region in MPM (1p21-23). A potential role for miR-137 has yet to be investigated in MPM. One known target of miR-137 is YB-1, a multifunctional protein often up-regulated in other aggressive cancers, where elevated YB-1 levels are linked to poor clinical outcomes. This study investigates the causes of miR-137 suppression, the relationship between miR-137 and YB-1, one of its targets, as well as their roles in MPM cell growth and malignant behaviour.

      Methods:
      Basal expression of miR-137 and YB-1 was determined in 13 MPM cell lines by RT-qPCR and immunoblotting. Cells were treated with 5’Aza-cytidine and RT-qPCR was conducted to link methylation with miR-137 suppression. Copy number variation (CNV) was investigated by ddPCR. Cells were transfected with miR-137 mimic and subsequent YB-1 expression was investigated using RT-qPCR. Proliferation, colony formation and wound-healing assays were conducted after transfection with miR-137 mimics or YB-1-specific siRNAs.

      Results:
      miR-137 was absent in 4 MPM cell lines (p<0.01) and was up-regulated in response to 5’Aza-cytidine treatment in these lines, as well as other lines with low basal expression. Copy-number loss was evident in 5 cell lines and gain was present in 2. Increasing levels of miR-137 generally inhibited MPM cell migration, proliferation and colony formation. miR-137 mimics significantly down-regulated YB-1 expression, while YB-1 protein was overexpressed in the majority of MPM cell lines, compared to MeT-5A. YB-1 knock-down resulted in dose-dependent growth inhibition over 120 hours, reduced colony formation and also decreased cell migration. Effects were more pronounced in those cell lines showing high YB-1 protein levels.

      Conclusion:
      Our results show that methylation and CNV are likely to play a role in miR-137 down-regulation in MPM and that miR-137 acts as a tumour suppressor in MPM through at least in part the down-regulation of YB-1. We also demonstrated that YB-1 is commonly overexpressed and plays a role in proliferation and migration. These results imply a direct relationship between miR-137 and YB-1 expression, a biological interaction that may prove a useful target in developing future therapeutic approaches in MPM.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.