Virtual Library

Start Your Search

G.R. Oxnard



Author of

  • +

    ED 13 - The EGF Receptor and Targeting T790M (ID 13)

    • Event: WCLC 2015
    • Type: Education Session
    • Track: Treatment of Advanced Diseases - NSCLC
    • Presentations: 1
    • +

      ED13.03 - How to Make the Best Use of 'Old' Drugs (ID 1826)

      14:15 - 15:45  |  Author(s): G.R. Oxnard

      • Abstract
      • Presentation
      • Slides

      Abstract:
      Acquired resistance to initial EGFR TKI invariably develops in patients with EGFR-mutant lung cancer after a median of 9-14 months. Though acquired EGFR resistance in NSCLC is a clinical condition that is treated and studied worldwide, there has until recently been a paucity of prospective data describing the best practices for managing these patients. In 2014, the first phase III trial studying EGFR-mutant lung cancer with acquired resistance was reported. Presented at ESMO 2014, the IMPRESS trial established platinum doublet chemotherapy as the standard second-line therapy for these patients, with no benefit to additionally continuing EGFR TKI at progression. And yet, even with standard second-line therapy established, there remain questions regarding how to manage patients with progressive disease (PD) on EGFR TKI, questions that will likely grow even more complex should newer agents reach the market. One way of framing this question is to consider the tools we have for managing acquired EGFR resistance, and then to consider how to best utilize them. The following outline provides a brief summary of therapeutic strategies that will be discussed further at WCLC 2015. · Continued TKI after PD - Feasible for a median of 3 months, especially in those with slow or asymptomatic PD (Lo et al, Cancer, 2015; Park et al, ESMO, 2014) · Retreatment with TKI after PD on chemo - 25% RR on a prospective phase II study of 20 patients, but responses were brief with a 3.4 month median PFS (Oh et al, Lung Cancer, 2012) · Afatinib – Limited activity in LUX-Lung 1 trial with 7% RR and 3 month median PFS (Miller et al, Lancet Oncol, 2010) · Afatinib / cetuximab – 29% RR and 4.7 month median PFS, with responses seen regardless of T790M status (Janjigian et al, Cancer Disc, 2014) · Cytotoxic chemotherapy – Cisplatin /pemetrexed has a 34% RR and 5.4 month median PFS after PD on gefitinib (Mok et al, ESMO, 2014) · Erlotinib & bevacizumab – May delay development of PD, but no prospective data for treatment of resistance (Seto et al, Lancet Oncol, 2014) · Erlotinib & crizotinib – Hypothetical option for MET-mediated resistance but requires dose reduction of both (Ou et al, ASCO, 2012) · Nivolumab – 82 patients with prior TKI and chemo treated on CheckMate 057, and there was no OS benefit seen compared to docetaxel (HR 1.18) (Paz-Arez, ASCO, 2015) · Erlotinib & nivolumab – 3 of 20 patients responded (15%) in the phase I study (Rizvi et al, ASCO, 2014) · Brain radiation – For CNS-only progression, radiation followed by restarting TKI can gain additional months of PFS (Weickhardt et al, JTO, 2012) · SBRT or surgical resection – An approach that is hypothesized to debulk a single resistant clone, thus delaying clinical resistance and prolonging the progression-free period (Weickhardt et al, JTO, 2012; Yu et al, JTO, 2013)

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MINI 16 - EGFR Mutant Lung Cancer 2 (ID 130)

    • Event: WCLC 2015
    • Type: Mini Oral
    • Track: Treatment of Advanced Diseases - NSCLC
    • Presentations: 2
    • +

      MINI16.03 - Dose Optimization of Rociletinib for EGFR Mutated NSCLC (ID 967)

      16:45 - 18:15  |  Author(s): G.R. Oxnard

      • Abstract
      • Presentation
      • Slides

      Background:
      Rociletinib (CO-1686) is a novel, oral, irreversible mutant selective tyrosine kinase inhibitor for the treatment of patients with mutant epidermal growth factor receptor (EGFR) non-small cell lung cancer (NSCLC). Rociletinib has demonstrated efficacy against activating mutations (L858R and Del19) and the dominant acquired resistance mutation (T790M), while sparing wild-type EGFR. A maximum tolerated dose was not identified in Phase 1 with 1000 mg BID the highest dose studied. Here we assess the efficacy and safety of the three doses of rociletinib (500 mg BID, 625 mg BID and 750 mg BID) selected for Phase 2 study.

      Methods:
      TIGER-X (NCT01526928) is a Phase 1/2 open-label, safety, pharmacokinetics and preliminary efficacy study of rociletinib in patients with advanced EGFR mutant NSCLC progressing after ≥1 EGFR tyrosine kinase inhibitor (TKI). Efficacy is assessed using RECIST. Safety is evaluated using standard adverse event (AE) reporting.

      Results:
      As of April 2015, a total of 231 central T790M positive patients were evaluable for efficacy and 343 for safety (any T790M). All patients were enrolled in the USA (85%), Europe (9%) and Australia (6%). Baseline characteristics were similar in each dose group. The median number of prior therapies was 2. 85% had EGFR TKI as their most recent prior therapy and 10% had a history of diabetes/hyperglycemia. Immature ORRs are 53% (500 mg BID), 52% (625 mg BID) and 43% (750 mg BID), with disease control rates of 89% (500 mg BID), 87% (625 mg BID) and 82% (750 mg BID). The most common ≥grade 3 treatment-related AE was hyperglycemia [16% (500 mg BID), 25% (625 mg BID) and 35% (750 mg BID)] which was managed with oral hypoglycemic agents. Only one patient discontinued the study for hyperglycemia. Grade 3 QTc prolongation was uncommon, occurring in 2% (500 mg BID), 7% (625 mg BID) and 10% (750 mg BID) of patients, and demonstrated a relationship to dose. There were no clinically relevant cutaneous toxicities with 7 cases of grade 1 rash and 4 cases of grade 1 stomatitis (no dose relationship) and no paronychia.

      Conclusion:
      All 3 Phase 2 doses of rociletinib are active and well tolerated in a Western patient population with advanced NSCLC. The lack of cutaneous toxicities confirms the selectivity of rociletinib for mutant forms of EGFR and is an important contributor to QOL and maintaining dose intensity (Lacouture et al. 2011). Overall, the adverse event frequency appears to be related to dose, but antitumor activity does not, thus the risk/benefit profile may be optimal at the lowest dose studied.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      MINI16.04 - Activity of Rociletinib in EGFR Mutant NSCLC Patients with a History of CNS Involvement (ID 965)

      16:45 - 18:15  |  Author(s): G.R. Oxnard

      • Abstract
      • Presentation
      • Slides

      Background:
      Rociletinib (CO-1686) is a novel, oral, irreversible tyrosine kinase inhibitor for the treatment of patients with mutant epidermal growth factor receptor (EGFR) non-small cell lung cancer (NSCLC) with activity against the activating mutations (L858R and Del19) and the dominant acquired resistance mutation (T790M), while sparing wild-type EGFR. TIGER-X (NCT01526928) is a Phase I/II open-label, safety, pharmacokinetics and preliminary efficacy study of rociletinib in patients with advanced EGFR mutation-positive NSCLC with progressive disease after ≥1 EGFR tyrosine kinase inhibitor (TKI). An overall response rate of 67% has previously been reported in this trial for T790M positive patients treated with the 500 and 625 mg BID doses (Soria 2014). Here we provide preliminary data on the activity of rociletinib in the subgroup of patients with a history of CNS disease.

      Methods:
      Patients with a history of CNS disease were permitted if asymptomatic and stable, as defined by steroid requirements. The primary activity endpoint was RECIST overall response rate. However, patients who developed progressive disease (PD) while on study treatment were allowed to continue therapy with rociletinib if deemed clinically beneficial by the investigator.

      Results:
      As of 16 March 2015, a total of 401 patients received therapeutic dose levels of rociletinib (500, 625 and 750 mg BID) including 170 (42%) patients with a history of CNS metastases. Based on this interim analysis, the RECIST overall response rate among these patients with a history of CNS disease is 41%. To date, 42 patients with a history of CNS disease have continued therapy with rociletinib post-progression. Of those who continued for at least 14 days the average treatment duration beyond PD was 89 days (range: 14 - 336 days). Twenty-two of the 42 patients with a history of CNS disease with PD also received brain radiation and continued rociletinib treatment for an average of 120 days (range: 22 – 336 days) after PD. Rociletinib is held on radiation days only. Progression-free survival data for these subgroups is not yet mature. The three most common adverse events in the patient population with a history of CNS disease are similar to those found in the general TIGER-X patient population: hyperglycemia, diarrhea and nausea.

      Conclusion:
      In patients with a history of CNS disease, a factor associated with poor prognosis, rociletinib is active with a RECIST response rate of 41%. Local CNS radiation has been administered safely with rociletinib held on radiation days and continued afterwards. Prolonged use of rociletinib post CNS radiation suggests ongoing systemic benefit is still experienced by these patients. The role of rociletinib in NSCLC patients with CNS involvement is being further explored in the ongoing TIGER clinical development program.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    MINI 30 - New Kinase Targets (ID 157)

    • Event: WCLC 2015
    • Type: Mini Oral
    • Track: Treatment of Advanced Diseases - NSCLC
    • Presentations: 1
    • +

      MINI30.06 - Activity of AUY922 in NSCLC Patients With EGFR Exon 20 Insertions (ID 1744)

      18:30 - 20:00  |  Author(s): G.R. Oxnard

      • Abstract
      • Presentation
      • Slides

      Background:
      EGFR exon 20 insertions (ins20) represent a rare subtype (4%) of EGFR mutations and are refractory to EGFR-specific tyrosine kinase inhibitors (TKIs). No effective targeted therapies exist for patients (pts) with ins20; median PFS on the irreversible EGFR TKI Afatinib is 2.8 months (mos). Based on a durable RECIST partial response (PR) to AUY922, a Heat Shock Protein 90 (Hsp90) inhibitor, observed in an EGFR ins20 patient in a previous study (NCT01124864), we designed a phase II investigator-initiated trial to assess the activity of AUY922 in NSCLC pts with EGFR ins20. Since pts with these mutations are rare, we identified other international investigators who have treated ins20 patients with AUY922. Here, we present the results of a pooled international experience of 21 patients with EGFR ins20 treated with AUY922 in the United States, Taiwan and the Netherlands.

      Methods:
      A total of 21 patients with EGFR in20 are included in this analysis. 14 were treated on a single-arm, multi-center, open-label study of AUY922 in advanced NSCLC pts with EGFR ins20 mutations in the US (NCT01854034). Five were treated on a multicenter Taiwanese trial of AUY922 across a variety of molecular NSCLC subtypes (NCT01922583) and two were treated on a compassionate-use basis in the Netherlands. The starting dose of AUY922 was 70mg/m2 IV weekly for all patients.

      Results:
      21 pts, including 14 females and 7 males, average age 55 (range, 27-75) were included in this analysis. The median number of prior therapies was 2 (range, 1-6.) 6 pts received a prior EGFR TKI; none responded to TKI monotherapy. The most common AUY922-related toxicities were grade 1-2 visual changes (18/21; 86%) diarrhea (18/21; 86%) and fatigue (15/21; 71%). The only treatment-related grade 3 toxicities was hypertension (2/21; 1%) and AST elevation (1/21; 0.5%). There was one death on study, related to pre-existing comorbidity/unrelated to AUY922. Among the 21 patients treated, 5 achieved a partial response by RECIST 1.1 (ORR 24%) (Figure 1.) The median PFS estimate is 3.9 mos (95% CI, 2.9 to 10.7.) 6 patients remain on treatment at the time of abstract submission. Updated results and correlation with specific ins20 mutations will be presented. Figure 1



      Conclusion:
      This international experience suggests that AUY922 may be an active therapy for advanced NSCLC pts with EGFR ins20 mutations with an ORR 24% and median PFS 3.9 mo. AUY922 is generally well-tolerated, though reversible low-grade ocular toxicity is common. Further study of AUY922 in this population is warranted.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    ORAL 17 - EGFR Mutant Lung Cancer (ID 116)

    • Event: WCLC 2015
    • Type: Oral Session
    • Track: Treatment of Advanced Diseases - NSCLC
    • Presentations: 1
    • +

      ORAL17.07 - Mechanisms of Acquired Resistance to AZD9291 in EGFR T790M Positive Lung Cancer (ID 1365)

      10:45 - 12:15  |  Author(s): G.R. Oxnard

      • Abstract
      • Slides

      Background:
      AZD9291 is an irreversible, mutant-selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) developed to have potency against both EGFR-sensitizing mutations and T790M. In the ongoing Phase I study of AZD9291 (AURA, NCT01802632), the response rate in patients with T790M positive lung cancer with disease progression on previous EGFR-TKI was >60%, with a preliminary median progression-free survival of >10 months. The molecular mechanisms underlying acquired resistance to AZD9291 are currently under investigation.

      Methods:
      Plasma genotyping was performed on patients from AURA who had progressed on AZD9291 if they had detectable T790M pre-AZD9291, as assessed by tumor or plasma genotyping, and if they had plasma collected at progression available for analysis. Cell-free DNA (cfDNA) was extracted from plasma taken at progression. Droplet digital PCR (ddPCR) was performed for EGFR exon 19 deletions, L858R, T790M, and C797S. For further exploration, next-generation sequencing (NGS) of an amplicon panel was performed on available progression cfDNA. Lastly, targeted NGS was performed on available resistance biopsy specimens.

      Results:
      Plasma specimens were available following disease progression on AZD9291 from 40 patients with tumors positive for T790M through tumor (33) or plasma genotyping (7). Twenty-six progression cfDNA specimens were positive for an EGFR-sensitizing mutation by ddPCR, and were deemed eligible for initial resistance analysis. Of these, 12 (46%) had no detectable T790M in plasma despite presence of the EGFR-sensitizing mutation, suggesting overgrowth of an alternate resistance mechanism. Seven patients had detectable C797S on ddPCR (27%), all with detectable T790M; of 14 with detectable T790M at resistance, C797S was only detected with EGFR exon 19 deletions (7/9) and not L858R (0/5, p=0.02). Plasma NGS was performed on 12 cases with acquired resistance that were T790M positive pretreatment. Exon 19 deletion/T790M/C797S were detected in four cases, with two of these harboring two different DNA mutations encoding for C797S. One case lost T790M and exhibited HER2 copy number gain (6.3 copies); a tumor biopsy from a separate case underwent aCGH at Institute Gustave Roussy and was also found to have focal HER2 amplification with loss of T790M. Targeted NGS was performed on resistance biopsies from a total of 10 patients from four centers with T790M positive biopsies pre-AZD9291. Six cases maintained T790M, with three harboring exon 19 del/T790M/C797S. In four cases with loss of T790M, one harbored BRAF V600E and one harbored PIK3CA E545K.

      Conclusion:
      Complementary genomic analysis of plasma and tumor DNA provides insight into the diverse molecular mechanisms of acquired resistance to AZD9291 in EGFR-mutant lung cancer. Our studies show that a majority of cases maintained T790M at resistance, at times acquiring a new C797S mutation in those with EGFR exon 19 deletion. Loss of T790M at progression may be mediated by overgrowth of cells harboring HER2 amplification, BRAF V600E, or PIK3CA mutations. These data highlight the need for investigation of combination therapies to effectively prevent or treat the complexity of drug resistance in EGFR-mutant lung cancer.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    ORAL 22 - Moving Beyond a Smoking Related-Cancer to the Young, Never-smokers and Inherited Disease (ID 117)

    • Event: WCLC 2015
    • Type: Oral Session
    • Track: Biology, Pathology, and Molecular Testing
    • Presentations: 2
    • +

      ORAL22.02 - Spectrum of Cancer Types in Kindreds with NSCLC and EGFR T790M Mutations: Results from INHERIT EGFR (ID 3180)

      10:45 - 12:15  |  Author(s): G.R. Oxnard

      • Abstract
      • Slides

      Background:
      EGFR T790M is most commonly seen as a somatic mutation in non-small cell lung cancer (NSCLC) following resistance to EGFR targeted therapies. Rarely EGFR T790M can be seen as a germline mutation where, in case reports, it has been associated with inherited lung cancer risk. However, the penetrance of the T790M germline mutation for NSCLC is not known, nor is it known whether germline carriers are also at risk for other cancers. The INHERIT study (INvestigating HEreditary RIsk from T790M, NCT01754025) is designed to prospectively identify and study individuals and family members with this rare germline mutation.

      Methods:
      Eligible subjects had EGFR T790M identified on routine cancer genotyping (excluding acquired T790M after therapy), or if they or a relative had already been found to carry a germline EGFR mutation. Confirmatory testing of saliva or blood was done to identify germline T790M carriers. Detailed 3-4 generation pedigrees of probands were constructed and analyzed for type of cancer, age at diagnosis, and relationship to proband with T790M mutation.

      Results:
      23 eligible kindreds were enrolled between 12/12 and 4/15, with 17 probands identified to have germline T790M and 6 probands shown to have acquired T790M. Average age at diagnosis for probands with germline T790M mutation was 55.8 (range 29 to 76) compared to 62 years (range 47 to 74) for non-germline probands. Pedigrees from confirmed T790M probands had an average kindred size of 28 members (range 3 to 40). Among the 325 1[st] and 2[nd] relatives, there were a total of 61 (18.7%) cancer diagnoses; 25 (39.7%) in lung, 4 (6.3 %) breast, 3 (4.8 %) colon, 4 (6.3) esophagus, 4 (6.3 %) leukemia/lymphoma, 3 (4.8 %) prostate, 3 (6.8%) bladder, 2 (3.2%) testes with about 1% or less with pancreatic, renal, brain, cervical cancer. Further, 7 of these 17 kindreds (41%) had multi-generational lung cancers consistent with autosomal dominant inheritance. In contrast, the cancer profile from the non-germline T790M kindreds showed high prevelance of breast cancer (61%; 13 of 21 relatives with cancer) and low prevalence of lung cancer (9%; 2 of 21). None of these 6 kindreds showed an autosomal dominant pattern of inheritance.

      Conclusion:
      A wide variety of tumor types were reported in this unique set of kindreds identified by tumor typing of probands for EGFR T790M mutations, with lung cancer as the most frequently reported cancer in close relatives. A high proportion of germline T790M kindreds also had a strong family history consistent with dominant inheritance. Future research will be needed to clarify the cancer risks in relatives of patients with EGFR T790M germline mutations and to develop guidelines and standards for prevention and early detection.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      ORAL22.05 - The Genomics of Young Lung Cancer Study (ID 503)

      10:45 - 12:15  |  Author(s): G.R. Oxnard

      • Abstract
      • Presentation
      • Slides

      Background:
      Primary lung cancer is increasingly understood as a heterogeneous disease made up of genomically defined subtypes requiring distinct treatment strategies. We hypothesize young age at diagnosis (< 40 years) is a clinical characteristic associated with an increased chance for a targetable genomic alteration. Our ALCMI study prospectively characterizes the somatic and germline genomics of young lung cancer (GYLC). Our goals are to identify a genomically enriched subtype of lung cancer, facilitate delivery of targeted therapy and lay groundwork for further studies of heritable and environmental lung cancer risk factors.

      Methods:
      Accrual opened July 2014. Patients are eligible if they were diagnosed with bronchogenic lung cancer less than age 40. A study website allows for virtual consenting so patients can participate remotely from anywhere in the world; and use social media to share our trial. We have an integrated data and bio repository that allows for seamless communication and completion of study activities like remote consenting and routing of blood and tumor specimens. We have defined 7 genomic alterations of interest based on the Lung Cancer Mutational Consortium (LCMC) (EGFR, KRAS, HER2, BRAF, ALK, ROS1, RET). We aim to demonstrate that the prevalence of targetable genomic alterations will be greater in our population compared to the LCMC and have powered our study to show an increase from 35% to 50%; and an improvement in use of targeted therapy from 22% to 40%. On study subjects without a known genotype will undergo comprehensive genomic profiling with the FoundationOne test to ensure that all of these genes have been tested. Subjects with advanced adenocarcinoma who are wild type for all 7 genes will receive additional genomic profiling using the FoundationOne Heme test; with the goal of identifying novel oncogenic drivers. Additional investigational genomics will include blood for germline analysis and plasma genomics. All on study genomic analysis is at no cost to the participant.

      Results:
      Preliminary results of the first 33 subjects show: Average age at diagnosis: 33 years; Range 22-39; Histology: adenocarcinoma n=29, squamous cell n=4; Stage at diagnosis: stage 4 n=26 (79%) stages 1-3 n=7 (21%). Of those with stage 4 adenocarcinoma (n=24); 18:24 (75%) have either an ALK re arrangement n=10 (42%), an EGFR activating mutation n=5 (21%) or a ROS1 fusion n=3 (13%).

      Conclusion:
      The trial is currently accruing (NCT02273336) https://www.openmednet.org/site/alcmi-goyl. We have accrued patients from the USA, Europe and Australia. Thus far in our prospective series those diagnosed with primary NSCLC < age 40 tend to have stage 4 adenocarcinoma. Preliminary results exceed our statistical expectation with 75% of our metastatic adenocarcinoma patients having an actionable mutation. We plan on presenting data for the first time at WCLC-2015 on the first 50 subjects. (Study, supported by grants from BJALCF, Beth Longwell Foundation, Peter Barker Foundation, Genentech, Schmidt Legacy Foundation, and Upstage Lung Cancer)

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    ORAL 38 - Liquid Biopsies (ID 147)

    • Event: WCLC 2015
    • Type: Oral Session
    • Track: Biology, Pathology, and Molecular Testing
    • Presentations: 2
    • +

      ORAL38.01 - A Prospective Study of Rapid Plasma Genotyping Utilizing Sequential ddPCR and NGS in Newly Diagnosed Advanced NSCLC Patients (ID 935)

      16:45 - 18:15  |  Author(s): G.R. Oxnard

      • Abstract
      • Presentation
      • Slides

      Background:
      Plasma genotyping of cell-free DNA (cfDNA) has the potential to allow for noninvasive genotyping while avoiding the inherent shortcomings of tissue genotyping and repeat biopsies. We have developed a quantitative droplet digital PCR (ddPCR)-based plasma genotyping assay capable of detecting common EGFR and KRAS mutations in NSCLC (Oxnard et al., CCR 2014). Although rapid and highly specific, this assay lacks the ability to both multiplex and detect complex genomic alterations such as rearrangements. In this prospective study, we evaluate the test characteristics of ddPCR combined with plasma next-generation gene sequencing (NGS) as a new paradigm for plasma genotyping.

      Methods:
      Patients with newly diagnosed advanced NSCLC were eligible. All patients were required to have a biopsy available or planned for tissue genotyping which was used for gold standard comparison. Patients underwent an initial blood draw and immediate plasma ddPCR for EGFR exon 19 del/L858R and KRAS G12X. A subset of patients additionally underwent plasma NGS using a unique probe set designed by our group to detect rearrangements and mutations in 12 genes (EGFR, KRAS, ALK, ROS1, BRAF, RET, NRAS, ERBB2, MET, MEK1, PIK3CA and p53). This plasma NGS assay utilized a novel bias corrected NGS which minimizes off-target reads (Resolution Bio) performed on a desktop MiSeq platform. Test turnaround time (TAT) was measured in business days from date of blood draw until test reporting.

      Results:
      120 patients with newly diagnosed advanced NSCLC have been enrolled and 94 have completed tissue and plasma genotyping. Tumor genotype included 25 EGFR exon 19/L858R mutants, 17 KRAS G12X mutants, 24 rare genotypes and 15 others. Median TAT for plasma ddPCR was 3 days (range 1-5). Specificity of plasma ddPCR was 99% for EGFR exon 19 del/L858R (68/69) and 100% for KRAS (77/77). Sensitivity of plasma ddPCR was 76% for EGFR exon 19 del/L858R (19/25) and 71% for KRAS (12/17). Plasma NGS is ongoing with testing completed on 11 patients with a known tumor genotype. 8 had a genotype detected on plasma NGS: 2 ALK rearrangements, 1 ROS1 rearrangement, 1 RET rearrangement, an EGFR G719A mutation, a KRAS G12C and a combined KRAS G12C/PIK3CA mutation - all matched the tumor genotype. Preliminary plasma NGS turnaround time ranged from 5-10 business days.

      Conclusion:
      Rapid plasma genotyping using sequential plasma ddPCR (1-5 day TAT) followed by plasma NGS (5-10 day TAT) represents a new paradigm for noninvasive plasma genotyping. This approach capitalizes on the use of rapid ddPCR for common targetable mutations and the ability of plasma NGS using an augmented MiSeq platform to multiplex and detect complex alterations. This new model for plasma genotyping uses testing platforms that can readily be employed in most molecular pathology laboratories allowing for widespread adoption.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      ORAL38.08 - Discussant for ORAL38.05, ORAL38.06, ORAL38.07 (ID 3481)

      16:45 - 18:15  |  Author(s): G.R. Oxnard

      • Abstract
      • Presentation

      Abstract not provided

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.