Virtual Library

Start Your Search

C.E. McCoach



Author of

  • +

    MINI 29 - Meta Analyses and Trial Conduct (ID 156)

    • Event: WCLC 2015
    • Type: Mini Oral
    • Track: Treatment of Advanced Diseases - NSCLC
    • Presentations: 1
    • +

      MINI29.07 - CNS Disease Enrollment Criteria for NSCLC Drug Trials (ID 908)

      18:30 - 20:00  |  Author(s): C.E. McCoach

      • Abstract
      • Presentation
      • Slides

      Background:
      CNS metastases are common in NSCLC, yet clinical trials of new drugs in NSCLC have widely varying inclusion and exclusion criteria in relation to CNS disease. CNS disease that has received local therapy may be dormant, confounding any subsequent drug benefit, whereas untreated CNS disease may reduce PFS if CNS and systemic drug exposure differs. Recently, RANO guidelines propose explicitly explored activity in CNS disease within solid tumor drug trials. The true extent of variation in CNS related enrollment criteria in NSCLC clinical trials has not been documented before.

      Methods:
      ClinicalTrials.gov was interrogated on September 11, 2014 looking for interventional drug trials including advanced NSCLC. The following characteristics were extracted: 1) trial phase; 2) experimental arm therapy (chemotherapy, targeted therapy, immunotherapy, anti-angiogenic); 3) location (US, International only, US + International); 4) sponsor (Industry, University/IIT, Cooperative Group, NCI); 5) CNS disease allowance (strict exclusion, allowed after local treatment (surgery/radiation), unrestricted/untreated disease allowed). Industry sponsorship was divided into ‘large pharmaceutical’, (top decile by number of sponsored trials) and ‘small pharmaceutical’ (lower 9 deciles). Exclusion of CNS metastasis was treated as a binary variable and grouped as ‘strict exclusion’ vs. ‘allowed CNS metastasis’ (‘allowed with treatment’ and ‘allowed untreated’). Univariable and multivariable logistic regression models were fit to test the association between exclusion of CNS metastasis and trial characteristics. Statistical significance was set at 0.05 with no adjustment for multiple testing.

      Results:
      Of 735 trials involving NSCLC, 325 (44%) were excluded from analysis mostly because of allowance of early stage NSCLC (50%, n=164), or no active therapy inclusion (45%, n=146). In the remaining 406 trials, patients with CNS metastases were excluded in 58 (14%), allowed after local treatment in 165 (41%), and allowed with no prior treatment in 104 (26%). CNS criteria were not referenced in the available information in 79 (19%) trials which were excluded from further analysis. On univariable analysis, the odds of CNS metastasis exclusion on trial were significantly lower in trials with vs. without targeted therapy (OR 0.44, 95% CI: 0.25-0.78, p=0.005) and significantly higher in trials with vs. without immunotherapy (OR 2.13, 95% CI: 1.06-4.28, p=0.04). No other univariable associations were significant. In multivariable analysis, after adjustment for all other factors, only trials located at international only vs. US only sites had greater odds of exclusion of CNS metastasis (OR 1.64, 95% CI 0.84-3.22; p=0.03).

      Conclusion:
      Although univariable analysis suggests class of agent may influence trial design, in multivariable analysis trial location was the only variable associated with strict exclusion of CNS metastases. This raises the possibility of exclusion based on historical/cultural rather than scientific factors. With 18% of trials (58/327) excluding all CNS disease and 50% (165/327) only allowing CNS disease if previously treated, less than a third of NSCLC trials permit unequivocal assessment of CNS activity (104/327). Given the high frequency of CNS disease in NSCLC, sponsors should consider consciously tailoring trial designs to more explicitly explore efficacy in this patient population.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    ORAL 17 - EGFR Mutant Lung Cancer (ID 116)

    • Event: WCLC 2015
    • Type: Oral Session
    • Track: Treatment of Advanced Diseases - NSCLC
    • Presentations: 1
    • +

      ORAL17.06 - Phase I/II Study of INC280 plus Erlotinib in Patients with MET Expressing Adenocarcinoma of the Lung (ID 1064)

      10:45 - 12:15  |  Author(s): C.E. McCoach

      • Abstract
      • Presentation
      • Slides

      Background:
      MET dysregulation is one mechanism responsible for EGFR-TKI (epidermal growth factor receptor-tyrosine kinase inhibitor) resistance in patients (pts) with EGFR mutated lung cancer. INC280 is a potent oral small molecular inhibitor of the c-MET kinase. We conducted a phase I/II study of INC280 plus erlotinib to determine the maximum tolerated dose (MTD), dose limiting toxicity (DLT), pharmacokinetics (PK) and antitumor activity of this combination. Tumor analysis of the EGFR and MET pathways was exploratory.

      Methods:
      Using a 3 + 3, dose escalation design, INC280 was increased over 5 dose levels (DL) from 100 - 600 mg po bid. Daily erlotinib was given at 100 mg in DL1 and 150 mg in DL 2- 6. DL 6 is a transition cohort from INC280 capsules (600 mg) to tablets (400 mg). Both agents were given for 28 days (1 cycle). Key eligibility included: lung adenocarcinoma with MET expression by a CLIA certified lab, age > 18, ECOG PS of < 2, acceptable organ function, and > 1 systemic therapy for advanced disease.

      Results:
      18 pts were treated on 6 dose levels. Pt characteristics: median age 59 (range 52-78), M/F (7/11), ECOG 0-1/2 (16/2), MET expression by IHC/FISH/RT-PCR/NGS (6/2/9/1), EGFR mutated tumors (9) and previously treated with erlotinib (12). 17 patients completed at least 1 cycle. One DLT (grade 3 neutropenia) occurred in DL 5 (Table 1). Common drug-related adverse events (AE) of any grade were rash (50%) and diarrhea (45%), fatigue (39%), anorexia and nausea (28% each) and increased alkaline phosphatase, hypoalbuminemia and paronychia (22% each). Drug-related grade 3/4 AE were anorexia, increased amylase or lipase and neutropenia (all 6%). PK analysis revealed that INC280 exhibited a linear PK and no interaction with erlotinib. Of the 17 evaluable patients, 3 (18%) patients had partial responses, 10 (59%) had stable disease, 3 of whom had a minor response (10-29% decrease in target lesion) (Table 1). Eight pts have received treatment for >3 months. Figure 1



      Conclusion:
      In patients with MET-expressing lung adenocarcinoma, INC280 plus erlotinib is feasible, tolerable and demonstrates anti-tumor activity. The recommended phase 2 doses are INC280 400 mg (tablets) bid plus erlotinib 150 mg daily. Three expansion cohorts have been initiated: 1 - EGFR mutated tumors refractory to an EGFR-TKI, 2 - EGFR-TKI naïve in the first line setting and 3 - WT EGFR that are EGFR-TKI naïve as second or third line therapy. Updated trial results from the expansion cohorts will be presented. NCT01911507

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.