Virtual Library

Start Your Search

E.S. Kim



Author of

  • +

    ED 04 - How to Set up a Multidisciplinary Lung Cancer Program Within a Community Care Environment and Provide Everyone with the Best Care for Lung Cancer (ID 4)

    • Event: WCLC 2015
    • Type: Education Session
    • Track: Community Practice
    • Presentations: 1
    • +

      ED04.05 - The Use of Pathways to Guide Consistency (ID 1786)

      14:15 - 15:45  |  Author(s): E.S. Kim

      • Abstract
      • Presentation
      • Slides

      Abstract:
      Introduction and Rationale: Assessment and treatment of the cancer patient continues to increase in complexity. Some oncologists have subspecialized in their disease discipline, allowing for a greater depth of knowledge in that particular cancer but not having the breadth of expertise over numerous cancers. The majority of cancer treatment is delivered in the community-based setting where most oncologists practice general oncology. This has created a need for treatment guidelines which help oncologists manage patients in a standard approach. The evolution of treatment guidelines or pathways has several purposes. There has been much research in justifying the implementation of treatment pathways as they lead to consistent care, tend to lower healthcare costs overall, and influence outcomes of care[1-3]. However, each individual system, hospital, or physician will have their own purpose for utilizing pathways, ranging from education of assessment and treatment recommendations to providing evidence to payers for treatment. The development of clinical pathways requires a predetermined strategy. Reports have stressed the need for transparency, inclusiveness, disclosure and frequency of meetings[4][,][5]. This then requires a team to translate the results of these meetings into disseminated information for the clinical teams. The Institute of Medicine published recommendations in 2011 on how to develop these clinical pathways[4]. Various other organizations have published guidelines, such as the National Comprehensive Cancer Network (NCCN), American Society of Clinical Oncology (ASCO), European Society of Medical Oncology (ESMO), Cancer Care Ontario, Cancer Council Australia, and Via Oncology. National Comprehensive Cancer Network (http://www.nccn.org/about/default.aspx) Clinical Practice Guidelines in Oncology The NCCN is the most comprehensive set of guidelines in the United States, covering 97% of all cancers. Guidelines cover the entire cancer spectrum, from prevention to survivorship issues, and are evidence-based and continually updated. Guideline content is consensus based and developed by one of 47 panels consisting of multidisciplinary and disease-specific oncologists and researchers. Within the guidelines, a variety of content can be utilized, including algorithms or decision pathways and discussion text summarizing historical and current data. American Society of Clinical Oncology (http://www.instituteforquality.org/practice-guidelines) Clinical Practice Guidelines ASCO currently has 11 topic areas in which clinical practice guidelines are available for both solid and hematologic malignancies (e.g. use of diagnostic testing and predictive assays, disease-specific treatment, supportive care and survivorship). Each year, ASCO solicits guideline proposals from its members. Expert panels, consisting of oncologists, nurses, pharmacists, and practice managers approve proposal topics and develop the guidelines. Anyone has the opportunity to comment on or provide new evidence for use in the guidelines through the ASCO Guideline Wiki page (https://pilotguidelines.atlassian.net/wiki/display/GW/ASCO+Guidelines). European Society of Medical Oncology (http://www.esmo.org/Guidelines) Clinical Practice Guidelines The ESMO Clinical Practice Guidelines consist of 60 guidelines on cancers of the breast, lung, gastrointestinal tract, head and neck, and more, as well as supportive care and bone health. The ESMO Guidelines Committee is comprised of a Subject Editor and other leading experts and they are charged with authoring, publishing, and disseminating the full clinical practices guidelines and Pocket Guides. Cancer Care Ontario (https://www.cancercare.on.ca/cms/One.aspx?portalId=1377&pageId=7582) Program in Evidence-Based Care (PEBC) The Cancer Care Ontario’s PEBC is a program of the Ontario provincial cancer system, with support from the Ontario Ministry of Health and Long Term Care. Guidelines focus on all stages of cancer, including prevention, screening, diagnostic assessment, treatment, palliative care and survivorship. The PEBC consists of multidiscipline panels (disease-specific and modality-specific guideline development groups) consisting of 200+ physicians, other healthcare providers, and methodologists. Cancer Council Australia (http://www.cancer.org.au/health-professionals/clinical-guidelines/) Clinical Guidelines Network Cancer Council Australia (CCA) is Australia’s national non-government cancer organizations. CCA has published full and condensed guidelines on cancer screening and treatment of lung, esophageal, endometrial, sarcoma, and prostate cancers. The CCA is currently working to transform these guidelines in to a web-based format Via Oncology, LLC (http://viaoncology.com/) Via Oncology Pathways Via Oncology is affiliated with the University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh Cancer Institute (UPCI). The Via Oncology Pathways were developed in 2005 to ensure high quality and standardized care in medical and radiation oncology across UPMC/UPCI facilities and now has grown to include practices from 20 states. Disease committees, consisting of physicians from all participating practices, have developed guidelines covering more than 90% of cancers to demonstrate value to patients, payers and referring physicians. Guidelines are available to participating providers only. Overcoming Barriers and Resistance Many reasons for why physicians do not follow guidelines have been noted in the literature, including: lack of clarity; length of guidelines; guideline format; lack of awareness; lack of familiarity; lack of agreement with the evidence; lack of outcome expectancy; lack of self-efficacy; inertia of previous practice; organizational constraints; excessive frequency of revision; and external barriers[5-8]. Kaster et al recently published data on key domains (stakeholder involvement, evidence synthesis, considered judgment, implementation feasibility, message, and format) related to positive implementation of pathways[5]. These domains largely are nested within two, broad categories: content creation and communication of content[5]. Clinical Trials One aspect that is not as inclusive in all clinical pathways is access or information to clinical trials. This content is an entirely different aspect to clinical pathways as different groups value clinical trials access differently. National accrual rates to clinical trials are low[9][,][10]. Barriers to clinical trial participation are noted on the patient, physician and system level. Clinical pathways that incorporate clinical trials may benefit the patient by increasing physician knowledge of available trials and may benefit the overall clinical trial by increasing accrual rates. EAPathways, Levine Cancer Institute, Carolinas HealthCare System We have developed in-house clinical pathways which include not only treatment pathways to assist clinicians, but also have a number of additional features. These include access to documents, educational resources, clinical trials information and communication to colleagues. The pathways on this proprietary system are developed by our disease-specific sections and housed on our system intranet. Conclusions Clinical pathways are an integral part of patient management. Their utilization is increasing and additional groups are developing these. Functionality and adaptability will be key, especially in the oncology realm, as changes in molecular testing and treatment options are occurring at a faster than ever rate. Educating our practitioners and empowering their ability to accurately assess and treat patients with cancer will enable consistent and efficient care. References 1. Hall SF, Irish JC, Gregg RW, Groome PA, Rohland S. Adherence to and uptake of clinical practice guidelines: lessons learned from a clinical practice guideline on chemotherapy concomitant with radiotherapy in head-and-neck cancer. Current oncology (Toronto, Ont.). Apr 2015;22(2):e61-68. 2. Sullivan WJ. Demystifying pathways in oncology. Managed care (Langhorne, Pa.). Jun 2012;21(6):34-38. 3. Gesme DH, Wiseman M. Strategic use of clinical pathways. Journal of oncology practice / American Society of Clinical Oncology. Jan 2011;7(1):54-56. 4. Graham R, Mancher M, Miller Wolman D, Greenfield S, Steinberg E, eds. Clinical Practice Guidelines We Can Trust. Washington DC: 2011 by the National Academy of Sciences; 2011. 5. Kastner M, Bhattacharyya O, Hayden L, et al. Guideline uptake is influenced by six implementability domains for creating and communicating guidelines: a realist review. Journal of clinical epidemiology. May 2015;68(5):498-509. 6. Kastner M, Estey E, Bhattacharyya O. Better guidelines for better care: enhancing the implementability of clinical practice guidelines. Expert review of pharmacoeconomics & outcomes research. Jun 2011;11(3):315-324. 7. Cabana MD, Rand CS, Powe NR, et al. Why don't physicians follow clinical practice guidelines? A framework for improvement. Jama. Oct 20 1999;282(15):1458-1465. 8. Collins IM, Breathnach O, Felle P. Electronic clinical decision support systems attitudes and barriers to use in the oncology setting. Irish journal of medical science. Dec 2012;181(4):521-525. 9. Go RS, Frisby KA, Lee JA, et al. Clinical trial accrual among new cancer patients at a community-based cancer center. Cancer. Jan 15 2006;106(2):426-433. 10. Comis RL, Miller JD, Colaizzi DD, Kimmel LG. Physician-related factors involved in patient decisions to enroll onto cancer clinical trials. Journal of oncology practice / American Society of Clinical Oncology. Mar 2009;5(2):50-56.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    ORAL 30 - Community Practice (ID 141)

    • Event: WCLC 2015
    • Type: Oral Session
    • Track: Community Practice
    • Presentations: 1
    • +

      ORAL30.08 - Discussant for ORAL30.05, ORAL30.06, ORAL30.07 (ID 3366)

      16:45 - 18:15  |  Author(s): E.S. Kim

      • Abstract
      • Presentation

      Abstract not provided

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

  • +

    P2.01 - Poster Session/ Treatment of Advanced Diseases – NSCLC (ID 207)

    • Event: WCLC 2015
    • Type: Poster
    • Track: Treatment of Advanced Diseases - NSCLC
    • Presentations: 2
    • +

      P2.01-085 - Abemaciclib in Combination with Single Agent Options in Stage IV NSCLC, a Phase 1b Study (ID 125)

      09:30 - 17:00  |  Author(s): E.S. Kim

      • Abstract
      • Slides

      Background:
      Abemaciclib, a cell cycle inhibitor selective for CDK4/6, demonstrated acceptable safety and early clinical activity in metastatic NSCLC, given orally as monotherapy on a continuous schedule. Combinations of abemaciclib showed greater activity compared with monotherapy in KRAS-mutant NSCLC preclinical models. Primary aim of study NCT02079636 was safety/tolerability of combination therapy with abemaciclib; secondary aims included pharmacokinetics and antitumor activity.

      Methods:
      In this open-label 3+3 dose-escalation study with expansion cohorts, eligibility included stage IV NSCLC, measurable or nonmeasurable disease (RECISTv1.1), ECOG PS ≤1, and 1-3 prior therapies. Abemaciclib was combined with pemetrexed (Part A, nonsquamous, 500 mg/m[2] IV day 1), gemcitabine (Part B, 1250 mg/m[2] IV days 1 and 8), ramucirumab (Part C, 10 mg/kg IV day 1, or 8 or 10 mg/kg IV days 1 and 8) (Q21), or LY3023414 (dual PI3K-mTOR inhibitor) (Part D, 100 mg, 150 mg or 200 mg orally Q12H). In escalation, patients were dosed continuously until progression with abemaciclib at 100 mg (Part D), 150 mg or 200 mg orally Q12H.

      Results:
      As of February 27, 2015, 70 patients (Parts A-C) received ≥1 dose; 15 patients at 150 mg and 55 patients (including all 39 patients in expansion) at 200 mg Q12H abemaciclib. The MTD was established at 200 mg Q12H abemaciclib for Parts A-C. See Table 1 for treatment-emergent adverse events (TEAEs). Stable disease was observed in 13/23 patients in Part A; 7 unknown, 4/24 patients in Part B; 10 unknown, and 7/23 patients in Part C; 12 unknown. In Parts A-C, 18/70 (26%) patients started ≥4 cycles (Part A=9, Part B=3, Part C=6). Three confirmed PRs were observed: Part B, 1 patient with squamous histology (unknown mutation status), Part C, 1 patient with nonsquamous histology (KRAS mutation positive; EGFR mutation negative), and 1 patient with squamous histology (unknown mutation status). Updated analyses will be presented including Part D and longer term follow-up for Parts A-C through approximately June 2015. Table 1. TEAEs related to treatment (≥20% in ≥1 part)

      % All grades (% Gr3/4) Part A (n=23) Part B (n=24) Part C (n=23)
      Diarrhea 65 (4) 50 (17) 52 (9)
      Fatigue 57 (9) 63 (8) 17 (4)
      Nausea 35 (0) 50 (4) 48 (9)
      Neutropenia 61 (61) 50 (33) 17 (4)
      Anemia 57 (26) 33 (17) 9 (0)
      Thrombocytopenia 39 (9) 38 (8) 17 (13)
      Decreased appetite 30 (0) 25 (0) 22 (0)
      Vomiting 9 (0) 21 (0) 35 (0)
      Blood creatinine increased 30 (0) 8 (0) 17 (4)
      Leukopenia 30 (22) 17 (8) 9 (4)


      Conclusion:
      Abemaciclib combined with single-agents with acceptable toxicity. Safety findings observed in Parts A and B are consistent with AEs expected when combining myelosuppressive compounds with abemaciclib, resulting in an increased myelosuppressive effect. In Part C, safety findings are consistent with those of single-agents. Tumor responses were observed in Parts B and C.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

    • +

      P2.01-099 - nab-Paclitaxel as Maintenance Therapy in Patients with Squamous Cell NSCLC (ABOUND.sqm) (ID 3122)

      09:30 - 17:00  |  Author(s): E.S. Kim

      • Abstract
      • Slides

      Background:
      Patients with squamous cell (SCC) non-small cell lung cancer (NSCLC) may be at risk of poorer outcomes and have fewer treatment options than those with other histologies. Furthermore, no randomized studies have demonstrated the benefit of maintenance therapy in these patients. In a phase III trial, first-line treatment with nab-paclitaxel plus carboplatin (nab-P/C) demonstrated a 68% improvement in the overall response rate (ORR; 41% vs 24%; P < 0.001) and a trend toward improved overall survival (OS; median, 10.7 vs 9.5 months; HR 0.890; P = 0.310) compared with solvent-based paclitaxel plus C in a subset of patients with advanced SCC NSCLC (Socinski et al. Ann Oncol. 2013;24:2390-2396). An exploratory analysis of the phase III trial demonstrated that therapy with nab-P/C beyond 4 cycles of first-line treatment was effective in the subset of patients with SCC NSCLC who did not progress (from the time of randomization, median progression-free survival [PFS] and OS were 6.8 and 13.8 months, respectively), and no new safety signals were noted (Socinski et al. IASLC 2013 [abstract 3438]). In the open-label, multicenter phase III ABOUND.sqm trial, the efficacy and safety of nab-P maintenance therapy after nab-P/C induction therapy will be evaluated in patients with advanced SCC NSCLC.

      Methods:
      During the induction part of the study, approximately 540 patients will be treated with 4 cycles of nab-P 100 mg/m[2] intravenously (IV; 30-minute infusion) on days 1, 8, and 15 plus IV C AUC 6 on day 1 every 21 days. Patients with a complete response (CR), a partial response (PR), or stable disease (SD) will be eligible for maintenance. In the maintenance part of the study, approximately 260 patients will be randomized 2:1 to nab-P 100 mg/m[2] on days 1 and 8 every 21 days plus best supportive care (BSC) or BSC alone until disease progression. Patients will be stratified by disease stage (IIIB vs IV), response to induction therapy (CR/PR vs SD), and ECOG performance status at the end of induction (0 vs 1). Key eligibility criteria include histologically or cytologically confirmed stage IIIB/IV SCC NSCLC, no prior chemotherapy for metastatic disease, ECOG performance status ≤ 1, adequate organ function, no active brain metastases, and preexisting peripheral neuropathy grade < 2. ClinicalTrials.gov identifier NCT02027428.

      Key Endpoints
      Primary PFS from randomization into the maintenance part of the study
      Secondary Safety OS from randomization into the maintenance part of the study ORR during the induction and maintenance parts of the study
      Exploratory Correlation between pretreatment tumor characteristics and response to treatment Association between changes in tumor characteristics and acquisition of resistance to therapy at the time of treatment failure during maintenance Correlation between genetic polymorphisms and treatment efficacy and/or toxicity Healthcare resource utilization during the maintenance part of the study Changes in quality of life


      Results:
      Not applicable.

      Conclusion:
      Not applicable.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    PLEN 04 - Presidential Symposium Including Top 4 Abstracts (ID 86)

    • Event: WCLC 2015
    • Type: Plenary
    • Track: Plenary
    • Presentations: 1
    • +

      PLEN04.01 - A Randomized, Phase III Study Comparing Carboplatin/Paclitaxel or Carboplatin/Paclitaxel/Bevacizumab with or without Concurrent Cetuximab in Patients with Advanced Non-Small Cell Lung Cancer (NSCLC): SWOG S0819 (ID 3612)

      10:45 - 12:15  |  Author(s): E.S. Kim

      • Abstract
      • Presentation
      • Slides

      Background:
      This abstract is under embargo until September 9, 2015 and will be distributed onsite on September 9 in a Late Breaking Abstract Supplement.

      Methods:


      Results:


      Conclusion:


      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.