Virtual Library

Start Your Search

W. Franklin



Author of

  • +

    O12 - Lung Cancer Biology II (ID 87)

    • Event: WCLC 2013
    • Type: Oral Abstract Session
    • Track: Biology
    • Presentations: 1
    • +

      O12.02 - Pathway Analysis of Gene Expression Profiles that Distinguish Persistent from Regressive Bronchial Dysplasia Indicate Synergistic Role for Polo-Like Kinase 1 (PLK1) and Epoxide Hydrolase 3 (EPHX3) in Malignant Progression. (ID 3334)

      10:30 - 12:00  |  Author(s): W. Franklin

      • Abstract
      • Presentation
      • Slides

      Background
      160,000 Americans die from lung cancer annually and the prognosis for invasive lung cancer is poor. Prevention of cancer represents an approach with high potential for significant reduction in mortality. Bronchial dysplasia (BD) is a precursor lesion of squamous cell carcinoma (SCC) of the lung, and persistent BDs represent a high risk subset of these lesions. Genomic instability is an important process underlying malignant progression. Gene expression microarray analyses were used to identify potential mediators of genomic instability in persistent BD and study their activity in these high risk lesions. Two genes, PLK1, which abrogates G2-M checkpoint DNA damage repair, and EPHX3, which converts tobacco smoke derived pro-carcinogens to mutagens, were selected for further analysis.

      Methods
      Sixty-three frozen baseline biopsies were classified into persistent/progressive BD, regressive BD , progressive non-dysplasia and stable non-dysplasia groups according to the presence or absence of BD on follow-up biopsies. H&E staining was performed on frozen sections to confirm histology, and RNA was harvested for global gene expression microarray analysis. Intergroup comparisons employed ANOVA statistical analysis with a false discovery rate of 10% to identify differentially expressed genes associated with persistence and gene expression alterations related to baseline histology used Spearman correlation coefficient cutoff of r= +/- 0.5. A pathway analysis (Ingenuity) using the persistence related genelist was performed to identify active pathways associated with persistence of BD. Validational studies were performed by quantitative RT-PCR in cell lines established from persistent and regressive bronchial sites. Inhibitors of persistence associated enzymes were used in tissue culture based assays of cellular proliferation.

      Results
      Gene expression analyses support the unique biological nature of persistent BD. Intergroup comparisons showed significant numbers of differentially expressed genes only in the comparisons of persistent BD with regressive BD (318 genes) or stable non-dysplasia (6254 genes). 831 genes showed differential expression associated with increasing baseline dysplastic grade regardless of outcome. While approximately half of these genes also differentiated persistent from regressive BD, the presence of numerous persistence related genes that are independent of histology further substantiates the unique high risk nature of persistent BD. A pathway analysis revealed “mitotic roles of PLKs” as having the most significant association with persistence. Quantitative RT-PCR using cultures of 8 persistent BD and 6 regressive BD validated increased expression in persistent BD of PLK1 (2.77X, p=0.002) and EPHX3 (2.36X, p=0.081). Using a classification of dysplastic specimens as high or low expressers of PLK1 and/or EPHX3 (high > mean), we found a significant direct relationship with increased level of outcome diagnosis score: low expression of both genes (2.58); high expression of only one gene (3.60); and high expression of both (5.06). The baseline diagnosis did not differ between groups. Culture of the SCC cell line H2009 with EPHX inhibitor revealed a non-significant trend toward decreased proliferation (80.4% vs untreated).

      Conclusion
      Gene expression data confirms the biologically distinct nature of persistent BD. PLK1 and EPHX3 overexpression demonstrate a cooperative effect in respect to increased outcome histology suggesting a potential role for these enzymes in persistence/progression of BD via promotion of genomic instability.

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.

  • +

    P2.02 - Poster Session 2 - Novel Cancer Genes and Pathways (ID 148)

    • Event: WCLC 2013
    • Type: Poster Session
    • Track: Biology
    • Presentations: 2
    • +

      P2.02-014 - Discovery of circulating protein biomarkers of lung dysplasia (ID 2481)

      09:30 - 16:30  |  Author(s): W. Franklin

      • Abstract

      Background
      Endobronchial dysplasia is a premalignant lesion commonly found in current and former smokers. Identifying and treating these lesions before they progress to lung cancer may improve survival. The iloprost chemoprevention trial demonstrated that supplementation with the prostacyclin analog, iloprost, reduced histologic dysplasia in former smokers (Keith et al. Cancer Prev Res. 2011). However, accurate detection of dysplasia requires invasive bronchoscopy to collect multiple endobronchial biopsy samples. This study is the first step in generating blood-based markers of dysplasia to identify individuals at high risk for developing lung cancer and who could benefit from chemoprevention treatment.

      Methods
      Baseline serum samples (n=70) collected from current and former smokers enrolled in the iloprost chemoprevention trial were analyzed with the SOMAscan proteomic platform, which measures 1129 proteins with a median limit of detection of 40 fM and 5% CV. To characterize dysplasia, 6 standardized endobronchial sites, as well as any others that appeared suspicious by either white light or autofluorescence visualization, were biopsied from each study participant and scored by expert pathologists. Samples were stratified by worst biopsy score (Max) for proteomic analysis. Biomarkers correlating with Max pathology score were identified using principal component analysis (PCA), a multivariate technique to identify correlated variables, and the univariate, non-parametric Kolmogorov-Smirnov test (KS test). Serum proteins correlating with pulmonary function were also analyzed.

      Results
      Six proteins correlated with the progression of Max pathology. The change in serum level of these proteins ranged from 14-50% when comparing the lowest (n=16) and highest (n=39) Max pathology score groups. The proteins function in neoplastic progression, cell adhesion, inflammation and metabolic regulation. The protein with the most significant change (FDR correct p value = 0.05) regulates plasma clearance of steroid hormones. The serum protein most strongly correlated with lung function in our study was VEGFR2, which mediates VEGF induced endothelial proliferation and is known to be reduced in the lungs of smokers and patients with COPD and emphysema.

      Conclusion
      Our preliminary results of serum biomarkers associated with preneoplastic dysplasia warrant further study. If validated, this serum-based test to identify individuals who may benefit from chemopreventive intervention could impact lung cancer survival. This work was supported by NCI grants CA 58187 and CA165780.

    • +

      P2.02-015 - Proteomic insights with lung cancer tumors based on histopathologic subtypes and genotypes (ID 2467)

      09:30 - 16:30  |  Author(s): W. Franklin

      • Abstract

      Background
      Proteomic analysis of blood and tissue can reveal essential connections between the biochemical pathways altered in malignancy and tools for cancer diagnosis and treatment. The two major histologic subtypes of non-small cell lung cancer (NSCLC), adenocarcinoma (AD) and squamous cell carcinoma (SQ) differ in prognosis and optimal treatment. Targeting molecular pathways that drive malignancy has led to a paradigm shift in the development of specific treatments for patients based on their tumor mutation profile. We have conducted a comparative proteomic analysis of lung tumor histologic and driver mutation subsets to reveal biomarkers that link critical pathways for cell growth and survival to specific tumor phenotypes and genotypes.

      Methods
      We analyzed 68 NSCLC tumor and matched non-tumor tissue lysates (2 ug total protein/sample) with the SOMAscan proteomic platform, which measures 1129 proteins with a median limit of detection of 40 fM and 5% CV. The study consisted of 49 AD and 19 SQ tumors, 88% of which were Stage I or II. Somatic driver mutations were identified with multiplex PCR (SnapShot genotyping). Pairwise proteomic comparisons of tumor/non-tumor or AD/SQ tissue samples were performed using the Mann-Whitney test. The non-parametric Kruskal-Wallis test was used to discover differences among multiple pairwise driver mutation comparisons. Dependency network analysis was used to explore correlations enriched in tumor tissue vs non-tumor tissue. The statistical significance of the results was adjusted for multiple comparisons using false discovery rate (FDR) correction.

      Results
      Differences between tumor and non-tumor tissue were dominated by inflammatory, apoptotic and cell proliferation proteins. A total of 79 proteins were significantly different between AD and SQ at a 15% FDR. When compared to non-tumor levels, these proteins divided into 3 phenotypes: AD only (9 proteins), SQ only (19 proteins) or Both (51 proteins). Both refers to proteins that are tumor biomarkers in both AD and SQ and the protein levels are different between AD and SQ. The most common pattern was a progression in protein levels from non-tumor to AD to SQ, whether the pattern was higher or lower in tumor tissue. These proteins are members of cell proliferation and inflammatory pathways. This observation is consistent with the SQ only proteins, which are enriched for angiogenesis, cell proliferation and cell adhesion proteins. Driver mutation analysis revealed 5 inflammatory proteins that were higher in KRAS vs EGFR mutations and a TNF-alpha antagonist that was suppressed in EGFR mutants.

      Conclusion
      Unexpected findings that the AD proteome is closer to non-tumor lung tissue than SQ were revealed through broad proteomic profiling. Alteration in cell proliferation and inflammation pathways discovered in this study may lead to new insights in tumor biology and targeted therapeutics. This work was supported by a grant from the LUNGevity Foundation, NCI grant CA 58187 and Cancer Center Support Grant (P30CA046934).

  • +

    PL03 - Presidential Symposium Including Top Rated Abstracts (ID 85)

    • Event: WCLC 2013
    • Type: Plenary Session
    • Track:
    • Presentations: 1
    • +

      PL03.07 - Treatment with Therapies Matched to Oncogenic Drivers Improves Survival in Patients with Lung Cancers: Results from The Lung Cancer Mutation Consortium (LCMC) (ID 2444)

      08:15 - 09:45  |  Author(s): W. Franklin

      • Abstract
      • Slides

      Background
      Detecting and targeting the oncogenic drivers EGFR and ALK have transformed the care of patients with lung adenocarcinomas. The LCMC was established to use multiplexed assays to test tumors for alterations in 10 genes and provide the results to clinicians to select treatments and clinical trials matched to the driver detected.

      Methods
      Fourteen LCMC sites enrolled patients with metastatic lung adenocarcinomas and tested their tumors in CLIA laboratories for activating mutations in 10 oncogenic driver genes.

      Results
      Tumors were tested from 1,007 patients for at least one gene and 733 for all 10 genes. An oncogenic driver was found in 466 (64%) of fully-genotyped cases. Among these 733 tumors, drivers found were: KRAS 182 (25%), sensitizing EGFR 122 (17%), ALK rearrangements 57 (8%), “other” EGFR 29 (4%), two genes 24 (3%), HER2 19 (3%), BRAF 16 (2%), PIK3CA 6 (1%), MET amplification 5 (1%), NRAS 5 (1%), MEK1 1 (<1%), AKT1 0. For cases with any genotyping, we used results to select a targeted therapy or trial in 275 (28%). Among 938 patients with follow-up, the median survivals were 3.5 years for the 264 with an oncogenic driver treated with genotype-directed therapy, 2.4 years for the 318 with an oncogenic driver with no genotype-directed therapy, and 2.1 years for the 360 with no driver identified (p<0.0001).

      Conclusion
      Individuals with lung cancers with oncogenic drivers receiving a corresponding targeted agent lived longer than similar patients who did not. An actionable driver was detected in 64% of tumors from patients with lung adenocarcinomas; more than one was present in 3%. Multiplexed testing aided physicians in choosing therapies and targeted trials in 28% of patients. This paradigm for care and research will expand as genotyping becomes more efficient with Next-Gen platforms, additional drivers are identified (i.e.ROS1 and RET), and more targeted drugs become available in the pharmacy and through clinical trials. Supported by HSS NIH NCI 1RC2CA148394-01. Trial Registered with Clinicaltrials.gov: NCT01014286.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.