Virtual Library

Start Your Search

T. Nakajima



Author of

  • +

    MO01 - Lung Cancer Biology - Techniques and Platforms (ID 90)

    • Event: WCLC 2013
    • Type: Mini Oral Abstract Session
    • Track: Biology
    • Presentations: 1
    • +

      MO01.09 - A novel murine xenograft model using samples obtained by EBUS-TBNA (ID 773)

      10:30 - 12:00  |  Author(s): T. Nakajima

      • Abstract
      • Presentation
      • Slides

      Background
      Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a minimally invasive approach for lymph node staging in patients with lung cancer. Although EBUS-TBNA has been utilized for various molecular testing, intrinsic characteristics of different lesions produce variability in the amount of cellular material that can be obtained. In some samples, the quantity of tumor recovered may be limited for subsequent testing. To overcome this problem, we evaluated the feasibility of establishing a murine tumor xenograft model using EBUS-TBNA samples for advanced translational research.

      Methods
      After confirmation of adequate sampling for cytopathological diagnosis during EBUS-TBNA, one additional pass was performed for this study (NCT01487603). The aspirate was stored in cell preservative solution (RPMI1640 with 10% FBS) for inoculation of the tumor for the xenograft model. The sample was transported to the laboratory on ice, then mixed with Matrigel and centrifuged. The pellet which contained tumor fragments was implanted to the subcutaneous pocket on the right flank of a NSG (NOD scid gamma) mouse. Once we confirmed the engraftment of the tumor, we passed the tumor to another mouse until 3 passages were completed. The success rate of tumor xenograft establishment was examined along with histopathology and the cellularity and cytopathologial diagnosis of the primary EBUS-TBNA samples.

      Results
      From December 2011 to June 2012, 19 patients were enrolled in this study. The cytopathological diagnoses were as follows; 12 adenocarcinoma, 3 squamous cell carcinoma, 1 large cell carcinoma NOS, and 3 small cell carcinomas. 8 out of 19 cases (42.1%) showed tumor formation. The mean duration between inoculation and tumor formation was 62.38 days (13-144 days). All engrafted tumors could be passed to the second mouse. The histological types of the engrafted tumors were 3 adenocarcinoma (3/12: 25%), 2 squamous cell carcinoma (2/3: 67%), 1 large cell carcinoma (1/1: 100%), and 2 small cell carcinomas (2/3: 67%). The tumor cellularity of primary EBUS-TBNA samples was sufficient for diagnosis and there was no correlation between engraftment and the degree of blood/lymphocyte contamination or percentage of necrosis.

      Conclusion
      EBUS-TBNA samples can be used for establishment of tumor xenograft model in immunodeficient mice. EBUS-TBNA allows minimally invasive sampling of metastatic lymph nodes in patients with advanced lung cancer which opens up possibilities for translational research. We need to continuously seek better ways to improve and standardize procurement and processing of samples obtained by minimally invasive techniques in order to optimize diagnosis and molecular analysis for improved patient care. Figure 1

      Only Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login, select "Add to Cart" and proceed to checkout. If you would like to become a member of IASLC, please click here.

      Only Active Members that have purchased this event or have registered via an access code will be able to view this content. To view this presentation, please login or select "Add to Cart" and proceed to checkout.